Nav: Home

A defence mechanism that can trap and kill TB bacteria

May 10, 2017

A natural mechanism by which our cells kill the bacterium responsible for tuberculosis (TB) has been discovered by scientists at the Francis Crick Institute, which could help in the battle against antibiotic-resistant bacteria.

The findings, published in Cell Host & Microbe, could enable scientists to develop treatments for TB - one of the world's biggest health challenges - without the use of antibiotics, meaning that even antibiotic-resistant strains could be eliminated. The research was done in collaboration with scientists at the University of Oslo, the Max Planck Institute for Infection Biology in Germany and the Radboud Institute for Molecular Life Sciences in the Netherlands.

"We are trying to better understand how our cells kill the bacteria with the idea of boosting people's natural defences in conjunction with conventional therapies to overcome TB," says Maximiliano Gutierrez, Group Leader at the Francis Crick Institute, who led the study.

Immune cells called macrophages recognise and engulf Mycobacterium tuberculosis - the bacterium responsible for TB - securing it within tight-fitting internal compartments known as phagosomes.

But before enzymes and toxic products can enter the phagosome to kill the bacterium, M. tuberculosis often escapes by puncturing holes in the phagosome membrane and leaking into the cell. In doing so, M. tuberculosis kills the cell and then feeds on its nutrients.

By imaging the infection of cells with TB bacteria in real time, the team uncovered an innate mechanism that prevents M. tuberculosis from damaging phagosomes: the phagosomes are enlarged so that the bacterium can't easily reach and puncture holes in the membrane. This gives the cell enough time for bacteria-killing weapons to enter before the bacterium has a chance to escape.

"We have known for a while that tight and spacious phagosomes exist, but it is only now becoming clear why there are two types," says Laura Schnettger, the first author of the paper and former PhD student in Maximiliano's lab at the Crick.

By tagging different components in the macrophage with fluorescent markers, the team were able to see the enlarging of M. tuberculosis-containing phagosomes in real time under the microscope. They observed that M. tuberculosis failed to escape from these enlarged membrane sacs and that antibacterial components were delivered more efficiently.

The team discovered that when macrophages are set to work engulfing M. tuberculosis, a protein known as Rab20 delivers additional membrane material to M. tuberculosis-containing phagosomes to enlarge them.

"If you think of a cell as a city with lots of different types of transport then Rab proteins are the master regulators of public transport. They tell components in a cell where to go," explains Maximiliano. "Rab20 directs more membrane to the phagosome, enlarging it and preventing the bacteria from getting out."

The team also analysed the typical coughed-up material from human patients with active TB. They found that these patients had more Rab20 in their body than people without TB, supporting the idea that Rab20 is important in fighting the TB infection.

"A very high proportion of people that are likely exposed to M. tuberculosis, are able to clear the infection without developing full-blown TB," says Maximiliano. "It is possible that the body's natural mechanism to enlarge phagosomes plays a part in this."

"The capture and escape of M. tuberculosis in cells is a highly dynamic process, so the only way you can understand what is going on is to image cells in real time at very high resolution. We are one of the few labs in the world that can perform long-term live cell imaging at sub-cellular resolution with the safety infrastructure required to work with a life-threatening bacterium."
-end-


The Francis Crick Institute

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.