Nav: Home

Guiding light

May 10, 2017

Anyone who has experienced jet lag knows that changing time zones can wreak havoc on our circadian rhythms. Modulated by external cues such as sunlight and temperature, the roughly 24-hour cycles in our physiological processes are extremely sensitive.

Humans aren't the only creatures whose circadian rhythms are dictated by light. The tiny Drosophila melanogaster -- known more commonly as the fruit fly -- sets its regular day-and-night-activity cycles in response to light. What's more, fruit flies also experience jetlag if they experience a sudden shift in the length of one of the day or night cycles.

That makes Drosophila so instructive for studying the mechanisms underlying those circadian patterns. Using fruit flies as a model organism, the Craig Montell Lab at UC Santa Barbara has made an unexpected discovery about rhodopsin -- a light-sensitive receptor protein common to humans and flies that regulates circadian rhythms through expression in the central brain. The findings are published in the journal Nature.

"Rh7 is the first example of a rhodopsin expressed in the central brain that is important in setting circadian rhythms," said senior author Craig Montell, the Duggan Professor in UCSB's Department of Molecular, Cellular and Developmental Biology. "Mammalian opsins are also expressed in many parts of the brain, but their roles are unknown."

Rhodopsins play well-established roles in image formation in both human and fly eyes. In the fruit fly, six rhodopsins are responsible for the full function of photoreceptor cells in the insects' eyes. But the role of the seventh, Rh7, was uncharacterized -- until now. The Montell group has demonstrated that Rh7 functions as a light sensor that governs daily day-and-night activity cycles.

"The discovery that Rh7 functions in circadian rhythms through expression in the central brain was unexpected," explained lead author Jinfei Ni, a UCSB graduate student. "It's also exciting because this finding expands the roles of these lights sensors, which were originally discovered more than 100 years ago."

To determine the role of Rh7, Montell, Ni and two collaborators at UC Irvine first confirmed that Rh7 was a real light sensor. They replaced Rh1 -- the primary light sensor in the photoreceptor cells of the fly's compound eye -- with Rh7 and found it was a suitable substitute. Next, the researchers established the expression pattern of Rh7 by demonstrating that it was present in the brain's central pacemaker neurons.

They then performed a series of behavioral studies demonstrating a role for Rh7 in regulating circadian rhythms. In one set of experiments, the scientists maintained the flies on 12-hour day and 12-hour night cycles and then extended one of the day cycles to 20 hours. Normal flies exhibited jet lag but adjusted within a day or two. However, mutant flies missing Rh7 experienced much more severe jetlag that persisted for many days.

Montell posited that the fly's central pacemaker neurons may correspond to a special type of cell in the mammalian eye. In mammals, retinal ganglion cells (RGCs) receive signals from rods and cones -- the light-sensing cells that let us see images -- and transmit those signals to the brain via the optic nerve. Only about 1 percent of RGCs are intrinsically photosensitive.

These ipRGCs, which contain melanopsin -- a visual pigment more akin to fly visual pigments than those in rods and cones -- don't have roles in image formation. But they are important for the photoentrainment of circadian rhythms. Due to their similar function and molecular features, Montell suggests that the fly's central pacemaker neurons expressing Rh7 are the equivalent of mammalian ipRGCs.

A light sensor in the central brain works in the fruit fly, because light can pass through the thin cuticle covering the insect's head. But what could opsins be doing in the mammalian brain? Is it possible that sufficient light penetrates the skull to activate rhodopsins? Montell and colleagues hope additional research will provide an answer.
-end-
This work was supported by grants from the National Eye Institute and the National Institute on Deafness and other Communication Disorders.

University of California - Santa Barbara

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.