Nav: Home

Molecular imaging reveals mechanism for resistance to immune checkpoint blockade

May 10, 2017

Among today's most promising weapons against cancer is the use of therapies that direct the immune system against a tumor. One approach - immune checkpoint blockade - is designed to circumvent the "off switches" that prevent the immune system from attacking healthy tissues but also can shield a tumor from the immune response. These drugs have had remarkable success in some but not all patients, and long-term survival has been achieved in a minority of patients.

Now a study from Massachusetts General Hospital (MGH) investigators has identified a surprising mechanism for resistance to immune checkpoint blockade. In their paper published online in Science Translational Medicine, the researchers describe finding that an antibody-based drug designed to block the immunosuppressive molecule PD-1 is removed from its target T cells by macrophages within minutes of administration in several mouse models of cancer. They also identify the molecular mechanism behind this drug capture, which could lead to ways to prevent the process.

"Immune checkpoint blockers are very effective in some patients but not others, and our current ability to understand why treatments work or fail is quite limited," says Mikael Pittet, PhD, director of the Cancer Immunology Program in the MGH Center for Systems Biology and senior author of the report. "Using high-resolution molecular imaging to track immune checkpoint drugs in real time, we were able to discover what was happening, devise ways to extend the time the drug binds to its target and improve treatment efficacy in our models."

Immune checkpoint molecules like PD-1 are expressed on the surface of CD8 T cells - the immune system's "killer cells" that attack cells that are damaged or diseased, including cancer cells - and act to suppress an inappropriate T cell response. Monoclonal antibodies that block pathways controlled by checkpoint molecules are the basis of current checkpoint blockade drugs. The MGH team used intravital microscopy - which examines biological processes in living animals through tiny implanted windows - to track the activity of an antiPD-1 drug in mouse models of colon cancer.

As expected, the labeled antibody was observed to bind to PD-1 molecules on CD8 T cells within a few minutes. But as little as 20 minutes later, the drug had been taken up by macrophages within the tumors. The same process of rapid antibody binding to PD-1 molecules on CD8 T cells, followed by macrophage uptake, was observed in models of melanoma and lung cancer. To determine how the antibodies were being removed from T cells, the researchers first confirmed that the macrophages neither expressed PD-1 molecules nor did they take up antibody not bound to T cells.

Experiments in mouse and human tumor cells revealed that antibody removal was accomplished through the interaction of the Fc region - the portion of an antibody that communicates with and directs the action of immune cells - and Fc receptors on the surface of macrophages. Administering an Fc receptor inhibitor prior to anti-PD-1 treatment both extended the binding of the drug to CD8 T cells and led to complete tumor disappearance in a mouse model. Whether a similar strategy could improve the results of immune checkpoint blockade in human patients may be answered by current clinical trials that combine immune checkpoint blockers with drugs targeting macrophages, which have number of detrimental effects in cancer.

"Our observations would not have been possible without a method of dynamically imaging drug action on a cellular level," says Pittet, who is an associate professor of Radiology at Harvard Medical School. "Our platform for imaging anti-PD-1 in live animals can easily be adapted to study additional checkpoint blockade agents, so we are building a program to track the cellular interactions that will allow us to decipher drug mechanisms and hopefully leverage knowledge into engineering better therapeutics."
-end-
The lead authors of the Science Translational Medicine report are Sean Arlauckas, PhD, and Christopher S. Garris, MGH Center for Systems Biology. Additional co-authors are Rainer Kohler, PhD, Michael Cuccarese, PhD, Katherine Yang, PhD, Miles Miller, PhD, Jonathan Carlson, MD, PhD, and Ralph Weissleder, MD, PhD, Center for Systems Biology; Maya Kitaoka and Robert Anthony, PhD, MGH Center for Immunology and Infectious Disease; and Gordon Freeman, PhD, Dana-Farber Cancer Institute. Support for the study includes the Samana Cay MGH Research Scholar Fund, National Institutes of Health grants R01AI084880, R01CA164448, R21CA190344, U54-CA151884, P50CA086355, DP2AR068272-01, and HL084312; Department of Defense grant PC140318, and the David H. Koch-Prostate Cancer Foundation Award in Nanotherapeutics.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, genomic medicine, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.