Nav: Home

New research puts distinct memories of similar events in their place

May 10, 2018

Neuroscientists have found new evidence on how distinct memories of similar events are represented in the brain.

Its findings, which appear in the journal Neuron, correct a previous misconception of how such memories are stored in the hippocampus--a part of the brain crucial for memory and understanding space.

"Previous research suggested that brain cells were 're-mapped' in making distinctions between memories of similar and distinct experiences," says André Fenton, a professor in New York University's Center for Neural Science and the senior author of the paper. "However, it's clear from our results that neuron activity is, in fact, synchronous--like a flock of starlings that takes on different formations while still maintaining cohesion as a flock.

"These new findings provide strong evidence in favor of a fresh, dynamic conceptualization of how neurons signal information."

The study was co-authored with Milenna Tamara van Dijk, a doctoral student at NYU's Langone Medical Center, working in the Center for Neural Science. It may be downloaded here.

It's been established that the electrical discharge of hippocampus cells signals places; each "place cell" contributes to a neural map-like representation of space by discharging only when we are in discrete parts of an environment called the cell's "place field." As we move from place to place through a space, one set of discharging place cells ceases to fire while another set starts to discharge and then ceases as we move away while the next set discharges, and so on to trace out the real-world path in neural activity such that the same particular sets of place cells are active whenever we return to the same places. Scientists John O'Keefe, May-Britt Moser, and Edvard Moser were awarded the 2014 Nobel Prize in Physiology or Medicine for their discovery of these and related cells.

While place fields have aided neuroscientists' understanding of how the brain represents memories and information, a specific question remains unanswered: how do brains learn and discriminate between similar and distinct experiences of similar things?

For instance, consider a commonplace experience such as parking your car in a familiar garage on different days of the week. Sometimes you remember parking in the same parking spot and other times you remember parking in different parking spots. How does the hippocampus discriminate between multiple memories, storing some as the same and others as different?

The prevailing view is that distinct memories are signaled by distinctive neural activity in a part of the hippocampus, dentate gyrus. Prior work has shown that a given set of dentate gyrus place cells readily change the relative locations of their firing fields in different environments, so if the fields of two cells overlapped in one environment, they would probably not overlap in the other, and vice versa. This "remapping" is assumed to underlie distinctive memories. However, dentate place cell remapping was never tested during a rigorous memory discrimination task.

In the Neuron study, the researchers explored this dynamic through a series of memory tests using mice.

Their results showed that, in fact, dentate place cells did not remap; their place fields were constant. Moreover, instead of remapping, memory discrimination was controlled by increases in the co-firing of dentate place cells and the neurons that organize which place cells discharge synchronously and asynchronously.

In other words, the firing of dentate place cells occurs globally, but are timed in different ways in order to express distinctive memories--instead of changing where cells fire overall.

"Different flock patterns occur when just a small number of starlings change course, with each starling maintaining strongly correlated movements with its nearest neighbors," explains Fenton, who also holds appointments at the Neuroscience Institute at NYU Langone Medical Center and SUNY Downstate. "Similarly, differences in the timing of the co-firing of neurons can signal differences in memory formation--all within a globally maintained spatial tuning and correlation structure."
-end-
The research was funded by grant from the National Institute of Aging, part of the National Institutes of Health (R01AG043688).

DOI: 10.1016/j.neuron.2018.04.018

New York University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of... View Details


The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology.

In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its... View Details


The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Leadership techniques backed by the world's most effective teams

The 7 Secrets of Neuron Leadership offers a diverse collection of wisdom and practical knowledge to help you build and lead your most effective team yet. Written by a former U.S. Navy diver, this book draws from the author's experiences and beyond to reveal key truths about the nature of teamwork, and expose the core of effective team leadership. You'll go back to ancient Greece to discover the nine personality types and the seven types of love that form the foundation of human interaction, and learn how... View Details


From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a... View Details


The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or... View Details


From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

A richly illustrated undergraduate textbook on the physics and biology of light

Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view... View Details


From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Neuron to Brain, Fifth Edition, provides a readable, up-to-date book for use in undergraduate, graduate, and medical school courses in neuroscience. As in previous editions, the emphasis is on experiments made by electrical recordings, molecular and cellular biological techniques, and behavioral studies on the nervous system, from simple reflexes to cognitive functions. Lines of research are followed from the inception of an idea to new findings being made in laboratories and clinics today.

A major change is that this edition begins with the anatomy and physiology of the... View Details


The NEURON Book
by Nicholas T. Carnevale (Author), Michael L. Hines (Author)

Assuming no previous knowledge of computer programming or numerical methods, The NEURON Book provides practical advice on how to get the most out of the NEURON software program. Although written primarily for neuroscientists, teachers and students, readers with a background in the physical sciences or mathematics and some knowledge about brain cells and circuits, will also find it helpful. Covering details of NEURON's inner workings, and practical considerations specifying anatomical and biophysical properties to be represented in models, this book uses a problem-solving approach that... View Details


From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated.

The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today.... View Details


The Dynamic Neuron
by John Smythies (Author)

A comprehensive review of current research on synaptic plasticity.

The traditional model of synapses as fixed structures has been replaced by a dynamic one in which synapses are constantly being deleted and replaced. This book, written by a leading researcher on the neurochemistry of schizophrenia, integrates material from neuroscience and cell biology to provide a comprehensive account of our current knowledge of the neurochemical basis of synaptic plasticity.

The book presents the evidence for synaptic plasticity, an account of the dendritic spine and the glutamate... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Inspire To Action
What motivates us to take up a cause, follow a leader, or create change? This hour, TED speakers explore stories of inspirational leadership, and what makes some movements more successful than others. Guests include high school history teacher Diane Wolk-Rogers, writer and behavioral researcher Simon Sinek, 2016 Icelandic presidential candidate Halla Tómasdóttir, professor of leadership Jochen Menges, and writer and activist Naomi Klein.
Now Playing: Science for the People

#474 Appearance Matters
This week we talk about appearance, bodies, and body image. Why does what we look like affect our headspace so much? And how do we even begin to research a topic as personal and subjective as body image? To try and find out, we speak with some of the researchers at the Centre for Appearance Research (CAR) at the University of the West of England in Bristol. Psychology Professor Phillippa Diedrichs walks us through body image research, what we know so far, and how we know what we know. Professor of Appearance and Health Psychology Diana Harcourt talks about visible...