Pterocarpanquinones and carbapterocarpans with anti-tumor activity against MDR leukemias

May 10, 2018

Careful thinking must be put since the very first days of the design of a new drug candidate to consider variables such as cost-effectiveness, novelty, side effects and the peculiarity of the disease to be treated. Cancer, as a multifactorial sum of diseases, present challenges since its high mutational background often grants tumor cells varying mechanisms to sustain cellular proliferation. Our group, consisting on researchers with different backgrounds as well, resorted to nature to find chemical groups that would present good in vivo tolerance with possibilities for further development. Pterocarpans, secondary metabolites derived mainly from isoflavonoids of the Papilionoideae subfamily of the Leguminosae plant family, served this purpose. They possess anti-inflammatory and antineoplastic properties along with a highly 'moddable' scaffold comprising phenolic rings. Addition of two prime pharmacophores such as naphthoquinones and sulfonamides added new mechanisms of antineoplastic action, since the first display prooxidant activity and the latter are described to inhibit tubulin polymerization and tyrosine kinases. Considering this, the resulting molecules LQB-118 and LQB-223 would likely induce toxicity to a variety of tumor cells.

Multidrug resistance (MDR), the major hurdle to a successful therapy outcome, would present additional challenges. Diverse mechanisms act in MDR to evade drug-induced apoptosis: changes in cell cycle and metabolic adaptation to the insult exerted by chemotherapeutics, upregulation of protective responses such as resistance to oxidative stress and antiapoptotic proteins (IAPs) and increase in the activity of efflux transporter proteins. These adaptations are dynamic and highly variable among tumor subtypes, in a way that drug design projects often show its shortcomings when MDR is considered. Our results indicated otherwise; in leukemic cells, inhibition induced by the hybrid pterocarpanquinone LQB-118 did not seem to associate with blockade on a particular phase of the cell cycle. On solid tumors, however, an increase in the G2/M phase was observed. On leukemias, suppression of the master cell cycle regulator FoxM1 produced changes in diverse phases of the cell cycle according to the cell subtype; on prostate cancer downregulation of cyclins B1 and D1 were present. Regarding protective responses, LQB-118 was able to overcome two of the most effective in dealing with cellular stress, increases in glutathione to counter oxidative damage and upregulation of survivin and XIAP to evade apoptosis. This profile would likely be associated to inhibition of a broad, upstream transcriptional regulator, and NF?B emerged as the cellular target of LQB-118. In addition, the effect of this compound was increased when autophagy was promoted with rapamycin, and no changes manifested when this pathway was inhibited with chloroquine. Downstream apoptotic responses were observed accordingly, such as calcium leakage from the endoplasmic reticulum, mitochondrial outer membrane depolarization, caspases' and PARP activation, and DNA fragmentation.

It became clear that LQB-118 was able to 'tweak' its mode of action and exert toxicity to different tumor cells. The multiple pathways affected are the reflection of the way the particular cell tries to circumvent the insult produced by this drug. This could partially be explained by the hybrid nature of LQB-118, in which both its pterocarpan and quinone scaffolds act in synergy for the bioactivation of this drug, producing oxidative and/or alkylating damage depending on the intrinsic biological feature of the tumor subtype. This would be nothing out of ordinary if this resulted in unacceptable toxicity to healthy organisms. Our group performed extensive studies on normal mice with diverse immunologic backgrounds, and this compound was able to reach its final targets in vivo, reducing tumor growth sparing normal cells. A similar outcome was observed on both healthy and neoplastic cells from leukemic patients at the National Cancer Institute of Brazil. Our compounds were designed to be effective in cells with MDR phenotype; as such, it was important to evaluate their efficacy on cells overexpressing ABC proteins. Given their isoflavonoid origin, LQB-118 was able to circumvent high levels of ABCB1 protein expression and functional activity, a profile that was maintained on LQB-223, the carba-derivative that was designed not to repeat the same molecular mechanisms displayed by LQB-118 (thus avoiding the non-innovative 'me-too' molecules). LQB-223 acted regardless of both ABCB1 and ABCC1 overexpression in leukemias as well as breast cancer cells, being of broader scope than LQB-118. Owing to its sulfonamide moiety, LQB-223 was demonstrated to bind to the minor groove of DNA, and recent yet unpublished results suggest DNA topoisomerases and ?-tubulin as targets of this carbapterocarpan, expanding its use.

Tracing back to the origins of the compounds, the diverse natures of our research group and the variety of prime chemical groups employed resulted in compounds with a myriad of mechanisms, adaptable to diverse phenotypes of drug resistance. The radical innovation applied to a prototypical chemical structure propose LQB-118 and LQB-223 as antineoplastic drug candidates directed to drug-resistant neoplasias, with good selectivity and interesting mechanistic features.
-end-
For more information, please visit: http://www.eurekaselect.com/161464

Reference: Rumjanek, VM; Maia, RC; Salustiano, EJ; Costa, PRR. Insights into the Biological Evaluation of Pterocarpanquinones and Carbapterocarpans with Anti-Tumor Activity against MDR Leukemias. Anti-Cancer Agents in Medicinal Chemistry, 2018, Vol. 18. [http://dx.doi.org/ 10.2174/1871520618666180420165128]

Bentham Science Publishers

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.