New tool analyzes disease and drug effects with unprecedented accuracy and consistency

May 10, 2018

BUFFALO, N.Y. - A new protein analysis tool developed at the University at Buffalo could vastly increase the speed and precision with which disease and drug effects are analyzed.

The groundbreaking tool, called IonStar, is the first to provide near-perfect accuracy when quantifying and comparing the abundance of proteins in the bodies of people who are healthy and ill.

Compared to industry standard MaxQuant, IonStar improved the measurement consistency of proteins in low abundance and lowered the amount of missing data in results from 17 percent to 0.1 percent, a level that has never been achieved with large samples.

The new tool could increase the quality and accuracy of medical diagnosis and quicken the pace of pharmaceutical development.

"IonStar will totally change the face of clinical and pharmaceutical research and industry, where large investigations are often critical," says Jun Qu, PhD, lead investigator and professor in the UB School of Pharmacy and Pharmaceutical Sciences.

The research was published yesterday in the Proceedings of the National Academy of Sciences (PNAS).

Playing Spot the Difference

The abundance of proteins in the body that correspond with disease or pharmaceutical reactions can provide researchers with vital clues for accurately diagnosing a condition, and for developing potential therapies and evaluating drug effects.

Protein analysis tools are used to quantify and compare the abundance of proteins in groups of healthy individuals with those who are ill or treated with a drug. Changes in protein abundances, when analyzed together, often reveal novel biomarkers.

The challenge for researchers is that current tools are not efficient at analyzing large numbers of samples. One type of method, the labeling-method, uses chemical tags to label proteins. The issue: The software can only analyze up to 10 samples at a time, making it difficult for researchers to conduct typical pharmaceutical and clinical studies, says Qu.

The alternative, the label-free method, can analyze a large number of samples at once at the expense of accuracy and precision, causing researchers to waste time and resources validating falsely identified biomarkers.

IonStar increases accuracy and precision and lowers missing data by improving on sample preparation methods, alignment and feature detection designs for mass spectrometry analysis.

"For example, in clinical trials, comparing a handful of patients gets you nowhere," says Qu. "If you can analyze a large number of patients with high-quality data, you can discover and track biomarkers much more accurately and reliably. The same is true for pharmaceutical investigations."

Proving the Concept in Traumatic Brain Injury

Researchers used IonStar to quantify proteins in rats with traumatic brain injury, a debilitating condition that accounts for 2.2 million emergency room visits annually in the United States.

Using 100 tissue samples, IonStar identified 7,000 proteins, including 1,000 that differed in abundance, without missing data.

IonStar also measured low-abundance proteins with higher accuracy and precision than other prevalent analysis tools. This capability is critical, says Qu, because proteins that appear in smaller amounts play a more influential role in the body.

"If higher-level proteins are soldiers, then lower-level proteins are the commanders. They are the regulators that tell the higher-level proteins what to do," says Qu.

Qu has used IonStar and similar techniques to analyze protein variation in cancer, diabetes, cardiovascular disease, neurodegeneration and retina degeneration as well.

Future work on IonStar will focus on expanding the number of samples the tool can analyze.
-end-
Co-principle investigators on the study include Benjamin Orsburn, PhD, proteomics scientist at the Frederick National Laboratory for Cancer Research; and Jianmin Wang, PhD, assistant professor of oncology and co-director of the Bioinformatics Core Resource at Roswell Park Comprehensive Care Center.

Among the co-authors are Shichen Shen, PhD, research scientist in the UB Department of Pharmaceutical Sciences; Xiaomeng Shen, PhD, scientist at Amgen and former doctoral student in the Department of Biochemistry in the Jacobs School of Medicine and Biomedical Sciences at UB; and Xue Wang, PhD candidate in the UB Department of Pharmaceutical Sciences.

University at Buffalo

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.