Nav: Home

Our history in the stars

May 10, 2019

Astronomers map the substance aluminum monoxide (AlO) in a cloud around a distant young star -- Origin Source I. The finding clarifies some important details about how our solar system, and ultimately we, came to be. The cloud's limited distribution suggests AlO gas rapidly condenses to solid grains, which hints at what an early stage of our solar evolution looked like.

Professor Shogo Tachibana of the UTokyo Organization for Planetary and Space Science has a passion for space. From small things like meteorites to enormous things like stars and nebulae -- huge clouds of gas and dust in space -- he is driven to explore our solar system's origins.

"I have always wondered about the evolution of our solar system, of what must have taken place all those billions of years ago," he said. "This question leads me to investigate the physics and chemistry of asteroids and meteorites."

Space rocks of all kinds greatly interest astronomers as these rocks can remain largely unchanged since the time our sun and planets formed from a swirling cloud of gas and dust. They contain records of the conditions at that time -- generally considered to be 4.56 billion years ago -- and their properties such as composition can tell us about these early conditions.

"On my desk is a small piece of the Allende meteorite, which fell to Earth in 1969. It's mostly dark but there are some scattered white inclusions (foreign bodies enclosed in the rock), and these are important," continued Tachibana. "These speckles are calcium and aluminum-rich inclusions (CAIs), which were the first solid objects formed in our solar system."

Minerals present in CAIs indicate that our young solar system must have been extremely hot. Physical techniques for dating these minerals reveal a fairly specific age for the solar system. However, Tachibana and colleagues wished to expand on the details of this stage of evolution.

"There are no time machines to explore our own past, so we wanted to see a young star that could share traits with our own," said Tachibana. "With the Atacama Large Millimeter/submillimeter Array (ALMA), we found the emission lines -- a chemical fingerprint -- for AlO in outflows from the circumstellar disk (gas and dust surrounding a star) of the massive young star candidate Orion Source I. It's not exactly like our sun, but it's a good start."

ALMA was the ideal tool as it offers extremely high resolution and sensitivity to reveal the distribution of AlO around the star. No other instrument can presently make such observations.

"Thanks to ALMA, we discovered the distribution of AlO around a young star for the first time. The distribution of AlO is limited to the hot region of the outflow from the disk. This implies that AlO rapidly condenses as solid grains -- similar to CAIs in our solar system," explained Tachibana. "This data allows us to place tighter constraints on hypotheses that describe our own stellar evolution. But there's still much work to do."

The team now plans to explore gas and solid molecules around other stars to gather data useful to further refine solar system models.
-end-
Journal article

Shogo Tachibana, Takafumi Kamizuka, Tomoya Hirota, Nami Sakai, Yoko Oya, Aki Takigawa, and Satoshi Yamamoto. Spatial distribution of AlO in a high mass protostar candidate Orion Source I. Astrophysical Journal Letters. DOI: 10.3847/2041-8213/ab1653

Funding by MEXT/JSPS KAKENHI: 25108002, 25108005, 17K05398

Related links

UTokyo Organization for Planetary and Space Science - http://utops.s.u-tokyo.ac.jp/en/
Institute of Astronomy - http://www.ioa.s.u-tokyo.ac.jp/
Department of Physics - http://www.phys.s.u-tokyo.ac.jp/en/
Graduate School of Science - https://www.s.u-tokyo.ac.jp/en/index.html

Research Contact

Professor Shogo Tachibana
UTokyo Organization for Planetary and Space Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
Tel: +81-3-5841-4430
Email: tachi@eps.s.u-tokyo.ac.jp

Press Contact

Ms. Kristina Awatsu
Office of Communication, Graduate School of Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN
Tel: +81-3-5841-8737
E-mail: kouhou.s@gs.mail.u-tokyo.ac.jp

Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.