Comparison of global climatologies confirms warming of the global ocean

May 10, 2019

The global ocean represents the most important component of the Earth climate system. The oceans accumulate heat energy and transport heat from the tropics to higher latitudes, responding very slowly to changes in the atmosphere. Digital gridded climatologies of the global ocean provide helpful background information for many oceanographic, geochemical and biological applications. Because both the global ocean and the observational basis are changing, periodic updates of ocean climatologies are needed, which is in line with the World Meteorological Organization's recommendations to provide decadal updates of atmospheric climatologies.

"Constructing ocean climatologies consists of several steps, including data quality control, adjustments for instrumental biases, and filling the data gaps by means of a suitable interpolation method", says Professor Viktor Gouretski of the University of Hamburg and a scholarship holder of the Chinese Academy of Sciences' President's International Fellowship Initiative (PIFI) at the Institute of Atmospheric Physics, Chinese Academy of Sciences, and the author of a report recently published in Atmospheric and Oceanic Science Letters.

"Sea water is essentially a two-component system, with a nonlinear dependency of density on temperature and salinity, with the mixing in the ocean interior taking place predominantly along isopycnal surfaces. Therefore, interpolation of oceanic parameters should be performed on isopycnals rather than on isobaric levels, to minimize production of artificial water masses. The differences between these two methods of data interpolation are most pronounced in the high-gradient regions like the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current," continues Professor Gouretski.

In his recent report, Professor Gouretski presents a new World Ocean Circulation Experiment/ARGO Global Hydrographic Climatology (WAGHC), with temperature and salinity averaged on local isopycnal surfaces. Based on high-quality ship-board data and temperature and salinity profiles from ARGO floats, the new climatology has a monthly resolution and is available on a 1/4° latitude-longitude grid.

"We have compared the WAGHC climatology with NOAA's WOA13 gridded climatology. These climatologies represent alternative digital products, but the WAGHC has benefited from the addition of new ARGO float data and hydrographic data from the North Polar regions", says Professor Gourteski. "The two climatologies characterize mean ocean states that are 25 years apart, and the zonally averaged section of the WAGHC-minus-WOA13 temperature difference clearly shows the ocean warming signal, with a mean temperature increase of 0.05°C for the upper 1500-m layer since 1984".

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Temperature Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

A drop in temperature
In the nearly two centuries since German physician Carl Wunderlich established 98.6°F as the standard ''normal'' body temperature, it has been used by parents and doctors alike as the measure by which fevers -- and often the severity of illness -- have been assessed.

Kitchen temperature supercurrents from stacked 2D materials
A 'stack' of 2D materials could allow for supercurrents at ground-breakingly warm temperatures, easily achievable in the household kitchen.

Get diamonds, take temperature
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers.

Chemical thermometers take temperature to the nanometric scale
Scientists from the Coordination Chemistry Laboratory and Laboratory for Analysis and Architecture of Systems, both of the CNRS, recently developed molecular films that can measure the operating temperature of electronic components on a nanometric scale.

How reliable are the reconstructions and models for past temperature changes?
Understanding of climate changes during the past millennia is crucial for the scientific attribution of the current warming and the accurate prediction of the future climate change.

New method measures temperature within 3D objects
University of Wisconsin-Madison engineers have made it possible to remotely determine the temperature beneath the surface of certain materials using a new technique they call depth thermography.

Who takes the temperature in our cells?
The conditions in the environment are subject to large fluctuations.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.

Read More: Temperature News and Temperature Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to