Nav: Home

New progress in developing an animal model of hepatitis C

May 10, 2019

Small differences in a liver cell protein have significant impacts on hepatitis C virus replication in mice and humans, findings that could facilitate the development of a mouse model of the infection. The report, led by researchers at Princeton University, was published today in the journal eLife.

Over 70 million people worldwide are chronically infected with hepatitis C virus (HCV), placing them at a high risk of developing liver cancer or cirrhosis. No vaccine exists to prevent infection, largely because the virus naturally infects only humans and chimpanzees, preventing it from being easily studied in the laboratory.

"We want to better understand what HCV needs to replicate in animals other than humans," said Jenna Gaska, a graduate student in the laboratory of Alexander Ploss, associate professor of molecular biology. "With this knowledge, we could develop improved animal models that can help us study the virus and develop a vaccine against it."

Mice can be infected with HCV if they are genetically engineered to produce human proteins that allow the virus entry to liver cells. Once inside, however, HCV is unable to replicate unless its genome is altered or the mouse's immune system is suppressed.

In the current study, Gaska and colleagues looked at whether the resistance to infection is due to a protein called cyclophilin A, which in humans is necessary for HCV to replicate inside host liver cells. The researchers found that the mouse version is much less efficient than the human version at promoting viral replication.

The researchers significantly improved the ability of the mouse version to work in human cells by mutating it to look more like human cyclophilin A. With these small changes, mouse cyclophilin A could now facilitate viral replication at levels comparable to human cyclophilin A.

"When we put this 'humanized' version of mouse cyclophilin A into liver cancer cells that normally do not replicate HCV, we saw increases in viral replication," Gaska said.

Gaska and colleagues additionally tested different versions of cyclophilin A in mouse liver cells containing several other proteins required for HCV entry and replication. Although the addition of human cyclophilin A and one of the mutants had the greatest impact on replication, the levels were still well below those seen in human cells. This suggests that additional factors are still required to allow HCV to robustly replicate inside mouse cells and, ultimately, inside live mice.

"Identifying these factors will be the subject of our future work, which we hope will ultimately lead to an immunocompetent mouse model for studying HCV and developing an effective vaccine," said Ploss, the study's senior author.

"This is really a very interesting and exciting study [and] an important step towards developing a tractable HCV small animal model," said Thomas Pietschmann, a professor at the TWINCORE Center for Experimental and Clinical Infection Research in Hannover, Germany, who was not involved in the study. "It will be interesting to confirm that human cyclophilin also enhances HCV infection and replication in primary hepatocytes and, of course, ultimately also in vivo. Moreover, these findings provide new opportunities to dissect the molecular mechanism of the HCV dependence of cyclophilin A."
-end-
The study, "Differences across cyclophilin A orthologs contribute to the host range restriction of hepatitis C virus," by Jenna M. Gaska, Metodi Balev, Qiang Ding, Brigitte Heller and Alexander Ploss, was published in the journal eLife on May 10, 2019.

This research is funded by the National Institutes of Health, the American Cancer Society, and a Burroughs Wellcome Fund Award for Investigators in Pathogenesis. The work was also supported by a postdoctoral fellowship from the New Jersey Commission on Cancer Research and an NIH training grant. The Flow Cytometry core facility is partially supported by the Cancer Institute of New Jersey Cancer Center Support Grant.

Princeton University

Related Hepatitis Articles:

Hepatitis C increasing among pregnant women
Hepatitis C infections among pregnant women nearly doubled from 2009-2014, likely a consequence of the country's increasing opioid epidemic that is disproportionately affecting rural areas of states including Tennessee and West Virginia.
WHO's Global Hepatitis Report sets baseline to eliminate viral hepatitis by 2030
The World Hepatitis Alliance today welcomes the publication of the first-ever Global Hepatitis Report by the World Health Organization (WHO), which includes new data on the prevalence and global burden of viral hepatitis.
Elimination of viral hepatitis by 2030: What's needed and how do we get there?
This first European Action Plan provides an important driver to aid countries in their fight against viral hepatitis, to which ECDC had the opportunity to contribute directly.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
Is Europe ready to eliminate viral hepatitis?
Currently, Europe records around 57,000 newly diagnosed acute and chronic cases of hepatitis B and C each year.
Why baby boomers need a hepatitis C screening
Hepatitis C affects a disproportionate amount of older Americans, born between 1945 and 1965.
Counterattack of the hepatitis B virus
The hepatitis B virus (HBV) infects liver cells. Drugs are available to treat HBV, but they rarely cure the infection, and so the virus typically returns after the treatment ends.
Hepatitis C tied to increased risk of Parkinson's
The hepatitis C virus may be associated with an increased risk of developing Parkinson's disease, according to a study published in the Dec.
The hepatitis A virus is of animal origin
The hepatitis A virus can trigger acute liver inflammation which generally has a mild course in small children but which can become dangerous in adults.
Modeling the helicase to understand hepatitis C
NS3 is an enzyme specific to the hepatitis C virus.

Related Hepatitis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".