Research on repetitive worm behavior may have implications for understanding human disease

May 10, 2019

Repetition can be useful if you're trying to memorize a poem, master a guitar riff, or just cultivate good habits. When this kind of behavior becomes compulsive, however, it can get in the way of normal life--an impediment sometimes observed in psychiatric illnesses like Tourette's syndrome and autism spectrum disorders. Now, Rockefeller scientists have identified a brain circuit that underlies repetition in worms, a finding that may ultimately shed light on similar behavior in humans.

Studying the microscopic roundworm C. elegans, the researchers found that defects in one protein cause animals to reorient themselves over and over again. Described in Nature Communications, these observations are bolstered by previous research in mice, and suggest that similar mechanisms may drive repetitive behavior in a range of animals, including humans.

Chemical cleanup

The scientists initially set out to understand how astrocytes, star-shaped cells found in mammalian brains, help neurons do their job. Astrocytes are thought to be responsible for, among other things, disposing of excess neurochemicals at synapses, the connections between neurons. This task is vital because if chemicals are not removed in a timely fashion, they can stimulate neurons in unexpected ways, disrupting normal brain function. To better understand this process, Menachem Katz, a research associate in the lab of Shai Shaham, looked to C. elegans CEPsh glial cells, which he suspected to be the worm equivalents of astrocytes.

Confirming this suspicion, Katz, Shaham, and their colleagues, used mRNA sequencing to show that mouse astrocytes and CEPsh glia have similar genetic signatures. Among other commonalities, both cell types produce the protein GLT-1, the mammalian version of which is responsible for clearing the chemical glutamate away from synapses. This finding, says Shaham, afforded the researchers a unique opportunity to define how astrocytes and GLT-1 work.

"Scientists have been trying to understand the functions of astrocytes for many years, and in mammals it's not easy because these cells are essential for keeping neurons alive," he says. "But in C. elegans there are only four CEPsh glial cells, and they are not required for neuron survival. This allowed us to investigate the specific roles of glutamate transporters, without worrying about the side effects of neuron sickness."

To do so, the researchers created C. elegans lacking GLT-1. Surprisingly, this depletion did not result in glutamate accumulation at synapses, as was expected. Instead, the worms exhibited oscillations in synaptic glutamate levels--and a peculiar behavioral defect.

"These animals changed their direction at a crazy rate. They just kept moving forward and going back, moving forward and going back," says Shaham, the Richard E. Salomon Family Professor. "And when we analyzed this behavior, we discovered that they did so in a really interesting pattern."

Turn, turn, turn

It's perfectly normal for C. elegans to change course every now and then. Typically, the worm reorients itself about once every 90 seconds. But worms lacking GLT-1, the researchers found, took this action to the extreme: at 90 second intervals the animals executed not one reversal, but bursts of them. "It's as if once they start the action, they can't stop repeating it," says Katz.

Further experiments revealed that removal of the glutamate receptor MGL-2 blocked both repetitive reversals and synaptic glutamate oscillations. The researchers concluded that when glutamate is not efficiently cleared, the chemical stimulates MGL-2, which in turn triggers the release of yet more glutamate. This process then repeats on a loop; and every time glutamate is released, it activates the neuron responsible for initiating reversals.

"These findings suggest a simple model for how repetition can occur in worms," says Katz. "And, it turns out, this model may hold up in more complex nervous systems."

Indeed, past experiments have shown that GLT-1 mutations cause repetitive grooming in mice, and that compounds blocking the mouse version of MGL-2 eliminate similar behavior in other contexts. Taken together with the new findings in C. elegans, this research suggests that abnormal glutamate secretion may underlie repetitive behaviors across the animal kingdom--raising the possibility that they may be relevant to understanding pathological repetition in humans.

Consistent with this idea, human genetics studies have found mutations associated with glutamate signaling in patients with obsessive compulsive disorder and autism spectrum disorders, both of which can be accompanied by repetitive behavior.

"We were really excited to see these links in the scientific literature because it means our findings may help uncover a plausible mechanism underlying an important class of human diseases," says Shaham. "And, more broadly, we're showing that candidate genes affected in human disease can be studied and verified in the simpler worm."
-end-


Rockefeller University

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.