A new plant-based system for the mass production of allergens for immunotherapy

May 10, 2020

Tsukuba, Japan - Allergies can significantly affect health and quality of life. While allergen immunotherapy provides long-lasting therapeutic relief to people suffering from environmental allergies, the therapy can last several years and requires large amounts of allergen. Now, researchers from the University of Tsukuba developed a novel system that enables the mass production of the major birch pollen allergen Bet v 1 in plant leaves in just a matter of days. In a new study published in Frontiers in Plant Science, they showed that their system not only produces large amounts of Bet v 1, but the purified protein was also highly reactive towards the IgE antibodies in sera from individuals with birch pollen allergy.

"The idea of allergen immunotherapy is to desensitize the body's response to the allergen by exposing patients to it in gradually increasing amounts," says corresponding author of the study Professor Kenji Miura. "Because a significant drawback is the difficult, expensive and low-yield production of allergens, our goal was to develop a new system that allows for the rapid and massive production of allergens that can be used in the clinical setting."

To achieve their goal, the researchers turned to their previously established "Tsukuba system," which makes use of a method called agroinfiltration. They first introduced the gene for Bet v 1 into a specific type of bacteria called Agrobacterium tumefaciens and let them grow. They then immersed leaves of the plant Nicotiana benthamiana into the bacterial solution to bring the bacteria into close contact with the plant, so the bacteria could transfer the Bet v 1 gene to plant cells, which in turn started producing the protein. To test the quality of their product, the researchers also produced the protein in Brevibacillus brevis, which is a standard bacterial host for protein production.

"We were able to purify 1.2mg of Bet v 1 protein from 1g leaves in just 5 days," explains Professor Miura. "This is a relatively large amount that is otherwise difficult to achieve using standard methods. Our next goal was to test whether our protein was immunogenic, which is a prerequisite for immunotherapy."

The researchers isolated sera from individuals with birch pollen allergy and mixed them with Bet v 1 protein purified from plants and bacteria. In both cases, the researchers were able to show that Bet v 1-specific IgE from the patients' sera, which is the antibody causing the allergy, was strongly reactive to their proteins.

"These are striking results that show how functional allergens can be produced in a fast and efficient way," says Professor Miura. "Given that immunotherapy requires 5-20μg allergen per treatment over several years, our findings could offer an opportunity to significantly improve allergen immunotherapy."
-end-


University of Tsukuba

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.