Nav: Home

Did ocean acidification cause marine mollusc extinction?

May 11, 2015

New research, led by the University of Southampton, has questioned the role played by ocean acidification, produced by the asteroid impact that killed the dinosaurs, in the extinction of ammonites and other planktonic calcifiers 66 million years ago.

Ammonites, which were free-swimming molluscs of the ancient oceans and are common fossils, went extinct at the time of the end-Cretaceous asteroid impact, as did more than 90 per cent of species of calcium carbonate-shelled plankton (coccolithophores and foraminifera).

Comparable groups not possessing calcium carbonate shells were less severely affected, raising the possibility that ocean acidification, as a side-effect of the collision, might have been responsible for the apparent selectivity of the extinctions.

Previous CO2 rises on Earth happened so slowly that the accompanying ocean acidification was relatively minor, and ammonites and other planktonic calcifiers were able to cope with the changing ocean chemistry. The asteroid impact, in contrast, caused very sudden changes.

In the first modelling study of ocean acidification which followed the asteroid impact, the researchers simulated several acidifying mechanisms, including wildfires emitting CO2 into the atmosphere (as carbon dioxide emissions dissolve in seawater they lower the pH of the oceans making them more acidic and more corrosive to shells) and vaporisation of gypsum rocks leading to sulphuric acid or 'acid rain' being deposited on the ocean surface.

The researchers concluded that the acidification levels produced were too weak to have caused the disappearance of the calcifying organisms.

Professor Toby Tyrrell, from Ocean and Earth Science at the University of Southampton and co-author of the study, says:

"While the consequences of the various impact mechanisms could have made the surface ocean more acidic, our results do not point to enough ocean acidification to cause global extinctions. Out of several factors we considered in our model simulation, only one (sulphuric acid) could have made the surface ocean severely corrosive to calcite, but even then the amounts of sulphur required are unfeasibly large.

"It throws up the question, if it wasn't ocean acidification what was it?"

Possible alternative extinction mechanisms, such as intense and prolonged darkness from soot and aerosols injected into the atmosphere, should continue to be investigated.

The study, which is published in the Proceedings of the National Academy of Sciences (PNAS), involved researchers from the University of Southampton and the Leibniz Center for Tropical Marine Ecology. The project received funding from the European Project on Ocean Acidification and funding support from NERC, Defra and DECC to the UK Ocean Acidification programme (grant no. NE/H017348/1).
-end-


University of Southampton

Related Ocean Acidification Articles:

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.
Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.
Ocean acidification is damaging shark scales
Sharks have unusual type of scales referred to as 'denticles.' A research group from South Africa and Germany that includes Jacqueline Dziergwa and Professor Dr.
New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification boosts algal growth but impairs ecological relationships
Shrimp fed on marine algae grown in acidic water do not undergo a sex change that is a characteristic part of their reproductive life-cycle, report Mirko Mutalipassi and colleagues at Stazione Zoologica Anton Dohrn in Italy in a study publishing June 26 in the open-access journal PLOS ONE.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
Ocean acidification harms cod larvae more than previously thought
The Atlantic cod is one of the most important commercial fish species in the world.
Business as usual for Antarctic krill despite ocean acidification
A new IMAS-led study has found that Antarctic krill are resilient to the increasing acidification of the ocean as it absorbs more C02 from the atmosphere due to anthropogenic carbon emissions.
More Ocean Acidification News and Ocean Acidification Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.