Nav: Home

Could flies help us understand brain injuries?

May 11, 2016

Each year, an estimated 1.7 million people in the United States sustain traumatic brain injuries (TBIs), according to the U.S. Centers for Disease Control and Prevention. These injuries occur most frequently from falling, but can also result from military combat, car accidents, contact sports or domestic abuse. Recently, physicians and researchers have become increasingly concerned that even mild cases of repetitive brain trauma could have long-term, unanticipated consequences.

Given the prevalence of these injuries, it's surprising that the genes and cellular pathways that can blunt TBI's harmfulness are relatively unknown, said Kim Finley, an associate professor at the San Diego State University Donald P. Shiley BioScience Center. A new study led by SDSU scientists and recently published in the journal Nature Scientific Reports suggests that using fruit flies as a TBI model may hold the key to identifying important genes and pathways that promote the repair of and minimize damage to the nervous system.

"Fruit flies actually have a very complex nervous system," said Finley, the study's co-lead author. "They are also an incredible model system that has been used for over 100 years for genetic studies, and more recently to understand the genes that maintain a healthy brain."

In humans, changes in mood, headaches and sleep problems are just a few of the possible symptoms associated with suffering mild traumatic brain injury. The timeline for these symptoms can vary greatly: Some people experience them immediately following injury, while others may develop problems many years after.

Finley noted that because fruit flies grow old quickly, observing them allows researchers to rapidly study the long-term consequences of traumatic brain injury.

"Traits that might take 40 years to develop in people can occur in flies within two weeks," she said.

To test whether flies can be used to model traumatic brain injuries, Finley and colleagues used an automated system to vigorously shake and traumatize thousands of fruit flies.

"Fruit flies come out of this mild trauma and appear perfectly normal," explained Eric Ratliff, an adjunct assistant professor at SDSU and the study's other co-lead author. "However, the flies quickly begin to show signs of decline, similar to problems found in people who have been exposed to head injuries."

In their study, injured fruit flies showed damage to neurons within the brain, as well as an accumulation of a protein called hyper-phosphorylated Tau, a hallmark feature of chronic traumatic encephalopathy (CTE). Furthermore, injured flies also began to experience insomnia and their normal sleep patterns deteriorated. The results suggest that studying traumatic injury in fruit flies may indeed reveal genetic and cellular factors that can improve the brain's resilience to injuries.

"It's really a unique model," Finley said. "We've developed it to be reliable, inexpensive, and fast."
-end-


San Diego State University

Related Traumatic Brain Injury Articles:

New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Studies uncover long-term effects of traumatic brain injury
Doctors are beginning to get answers to the question that every parent whose child has had a traumatic brain injury wants to know: What will my child be like 10 years from now?
People with traumatic brain injury approximately 2.5 times more likely to be incarcerated
People who have suffered a traumatic brain injury are approximately 2.5 times more likely to be incarcerated in a federal correctional facility in Canada than people who have not, a new study has found.
Traumatic brain injury associated with long-term psychosocial outcomes
Traumatic brain injury (TBI) during youth is associated with elevated risks of impaired adult functioning, according to a longitudinal study published in PLOS Medicine.
Curbing the life-long effects of traumatic brain injury
A fall down the stairs, a car crash, a sports injury or an explosive blast can all cause traumatic brain injury (TBI).
Is traumatic brain injury associated with late-life neurodegenerative conditions?
Traumatic brain injury (TBI) with loss of consciousness was not associated with late-life mild cognitive impairment, Alzheimer disease or dementia but it appeared to be associated with increased risk for other neurodegenerative and neuropathologic findings, according to a new article published online by JAMA Neurology.
Link found between traumatic brain injury and Parkinson's, but not Alzheimer's
Traumatic brain injury (TBI) with a loss of consciousness (LOC) may be associated with later development of Parkinson's disease but not Alzheimer's disease or incident dementia.
Novel peptide protects cognitive function after mild traumatic brain injury
Scientists at the Hebrew University of Jerusalem have shown that a single dose of a new molecule can protect the brain from inflammation and cognitive impairments following mild traumatic brain injury.
Allen Institute releases powerful new data on the aging brain and traumatic brain injury
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury in collaboration with UW Medicine researchers at the University of Washington, and Group Health.
Developing tools to screen traumatic brain injury therapies
University of Houston biologist Amy Sater will be developing a model for studying traumatic brain injury, thanks to a two-year, $386,000 grant from the Robert J.

Related Traumatic Brain Injury Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...