Nav: Home

A quasiparticle collider

May 11, 2016

In the early 1900s, Ernest Rutherford shot alpha particles onto gold foils and concluded from their scattering properties that atoms contain their mass in a very small nucleus. A hundred years later, modern scientists took that concept to a new level, building the Large Hadron Collider in Switzerland to smash protons into each other, which led to the discovery of the Higgs boson.

However, what worked for particles like the Higgs hasn't translated to solids -- until now. Experiments conducted by UCSB physicist Mark Sherwin and an international team prove that basic collider concepts from particle physics can be transferred to solid-state research. Their findings appear in the journal Nature.

"Ultimately, this approach might lead to the clarification of some of the most outstanding enigmas of condensed matter physics," said co-author Sherwin, director of UCSB's Institute for Terahertz Science and Technology and a professor in the Department of Physics. "This is a fundamentally new concept that could lead to better-designed modern materials. Our results also may one day provide a better understanding of important phases of matter such as those found in high-temperature superconductors."

Despite the fact that modern technology depends on knowing the structural and electronic properties of solids, a parallel to the atomic-level collider has been lacking in solid-state research. Within a solid, the most useful analogs to particles like protons are called quasiparticles. Think of them this way: If each person in a very large stadium is like an atom in a solid, then the audience doing the "wave" is akin to a quasiparticle.

Earlier experiments by the Sherwin group at UCSB have created quasiparticles called excitons -- pairs of electrons and holes (electron vacancies) bound by the electrical force between them -- and continuously accelerated them using laser beams that remain on during the entire process. But without short pulses of laser light, actual collision events were not previously observable as distinct flashes of light.

This new research employed a unique laser source at the terahertz high-field lab in Regensburg, Germany, which enabled the investigators to directly observe quasiparticle collision events. Since the quasiparticle exists for an extremely short amount of time, it was crucial to operate on ultrashort timescales. If one second were stretched to the age of the universe, a quasiparticle would only exist for a few hours.

The scientists produced collisions within excitons in a thin flake of tungsten diselenide. A light wave of the terahertz pulse accelerated the electrons and holes of the exciton within a period shorter than a single oscillation of light (1 terahertz means 1 trillion oscillations per second).

The experiment demonstrates that only excitons created at the right time lead to electron-hole collisions, just as in conventional accelerators. However, this process of recollision generates ultrashort light bursts that encode key aspects of the solid. These laboratory observations have been supported and explained by a quantum mechanical simulation performed by co-authors at the University of Marburg in Germany.

"These time-resolved collision experiments in a solid prove that the basic collider concepts that have transformed our understanding of the subatomic world can be transferred from particle physics to solid-state research," Sherwin said. "They also shed new light on quasiparticles and many-body excitations in condensed matter systems."
-end-


University of California - Santa Barbara

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...