Nav: Home

New insights into the tumor metabolism

May 11, 2017

Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance. These changes in pH value could be used for example to verify the success of cancer treatments. Up to now, however, there has been no imaging method to render such changes visible in patients. Now a team from the Technical University of Munich (TUM) has developed a pH sensor that renders pH values visible through magnetic resonance imaging (MRI) - in a non-invasive, radiation-free manner.

Four years ago, during a magnetic resonance experiment with tumor cells, TUM physicist Dr. Franz Schilling found signals from a molecule that was highly sensitive towards pH changes. The molecule, which was identified as zymonic acid in subsequent investigations, could play an important role in the future of medical imaging. As a biosensor for pH values, it could provide insights into the body which had been impossible in the past.

"An appropriate pH imaging method would make it possible to visualize abnormal changes in tissue and specifically metabolic processes of tumors," explains Franz Schilling. Areas surrounding tumors and inflammations are usually slightly more acidic than areas surrounding healthy tissue, a phenomenon possibly linked to the aggressiveness of tumors. Schilling sees further potential uses in treatment prognoses: "pH values are also interesting when it comes to evaluating the efficacy of tumor treatments. Even before a successfully treated tumor starts to shrink, its metabolism and thus the pH value of the surrounding area could change. An appropriate pH imaging method would indicate at a much earlier stage whether or not the right approach has been selected."

Schilling is now Director of the working group for Preclinical Imaging and Medical Physics at the Clinic and Polyclinic for Nuclear Medicine in the TUM Klinikum rechts der Isar. In past years, he has joined together with colleagues from the departments of Physics, Chemistry and Medicine to research zymonic acid as a biosensor. In the journal Nature Communications the team describes how it can be used to reliably represent pH values in the bodies of small animals.

MRI-Imaging with time constraints

In order to make pH values visible using zymonic acid, the molecule is injected into the body and then a magnetic resonance imaging (MRI) investigation is made of the object tissue. In greatly simplified terms: In a strong magnetic field, radiowaves excite the nuclear spins of the zymonic acid to oscillation. The reactions of the nuclei are then recorded. This data is used to calculate frequency spectra that in turn provide information about the chemical properties of the molecular surroundings of the nuclei. Ultimately, the pH value at any examined location in the tissue can be represented based on pH-dependent molecular changes in the zymonic acid.

Zymonic acid has to be marked with carbon 13 in order to be visible in MRI images. This means that the molecules contain carbon 13 atoms (13C) instead of "normal" carbon 12 atoms. But zymonic acid marked in this manner is still not measurable: its MRI signal is too weak. "We therefore use a relatively new method, hyperpolarization," explains Stephan Düwel, physicist and first author of the study. "We use a special device to transfer the polarization of electrons to the 13C atomic nuclei using microwaves at very low temperatures, which results in an MRI signal up to 100,000 times stronger." A hot liquid is then used to quickly return the zymonic acid to room temperature.

After this, the scientists need to act quickly. The biosensor is injected intravenously into the organism, then the MRI scan has to be made immediately: It only takes 60 seconds for the signal-amplifying effect of the hyperpolarization to wear off again. "We're currently working on expanding this time window," says Düwel. "On the one hand, we're trying to improve the MRI properties of zymonic acid with appropriate modifications to the molecule; On the other hand, we're looking for other pH-sensitive molecules," explains biochemist Christian Hundshammer, second author of the study.

Advantages compared to other approaches

Franz Schilling and his team have succeeded in showing that their method is sensitive enough to represent medically relevant pH value changes in the organism. Using zymonic acid it is furthermore possible to specifically investigate the pH value outside of the cell membrane: With other biosensors it is often not clear whether measured changes take place inside or outside of the cell (intracellular or extracellular). This is important because the intracellular value is usually stable, while changes in metabolism have a much greater impact on the extracellular value.

In contrast to optical methods, which are limited to superficial penetration into the body because of the low transparency of tissue, there are no limitations to the depth of penetration for MRI. It has furthermore been demonstrated that zymonic acid is not toxic in the concentrations used with small animals and is also created in low concentrations as a by-product of the metabolite pyruvic acid which is present in the body.

"We believe zymonic acid is a highly promising biosensor for patient applications," says Franz Schilling. For the time being, however, additional pre-clinical studies are planned in order to ascertain the advantages of this new imaging biomarker compared to conventional methods and to further improve the spatial resolution of pH imaging.
The research project was funded by the Collaborative Research Centre 824 (SFB824) "Imaging for Selection, Monitoring and Individualization of Cancer Therapies" led by Prof. Markus Schwaiger.


S. Düwel, C. Hundshammer, M. Gersch, B. Feuerecker, K. Steiger, A. Buck, A. Walch, A. Haase, S. J. Glaser, M. Schwaiger, F. Schilling, "Imaging of pH in vivo using hyperpolarized 13C-labeled zymonic acid". Nature Communications (2017). Doi: 10.1038/NCOMMS15126

F. Schilling, S. Düwel, U. Köllisch, M. Durst, R.F. Schulte, S.J. Glaser, A. Haase, A.M. Otto, M.I. menzel. "Diffusion of hyperpolarized 13C-metabolites in tumor cell spheroids using real-time NMR spectroscopy". NMR Biomed., 26:5 (2013) 557-568. doi:10.1002/nbm.2892

Further Information:

Dr: Franz Schilling:

Chairs involved:

Prof. Dr. Steffen J. Glaser, Professor for Organic Chemistry Prof. Dr. Markus Schwaiger, Professor for Nuclear Medicine Prof. Dr. Axel Haase, Biomedical Engineering


Dr. rer. nat. Franz Schilling
Director of Preclinical Imaging
Klinik und Poliklinik für Nuklearmedizin
Klinikum rechts der Isar
Technical University of Munich
Tel: +49 (0) 89 4140 4586

High-Resolution Images:

Technical University of Munich (TUM)

Related Magnetic Resonance Imaging Articles:

Fatty liver diagnosis improved with magnetic resonance
Taking tissue samples from the liver to diagnose fatty liver can be replaced in most cases by a painless magnetic resonance investigation.
Manipulating magnetic textures
While the ability to easily control the magnetic properties of small electronic systems is highly desirable for future small electronics and data storage, an effective solution has proven to be extremely elusive.
Magnetic fields at the crossroads
Almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks.
Three magnetic states for each hole
Nanometer-scale magnetic perforated grids could create new possibilities for Computing.
Perspectives on magnetic reconnection
Article describes latest research on magnetic reconnection.
Magnetic Resonance Imaging to predict the salt content of Iberian ham
The University of Extremadura have developed a non-destructive, innocuous method using magnetic resonance, computer vision and statistical calculus that enables one to quantify the salt content of Iberian ham, and classify it according to the degree of penetration of the salt in the muscle.
Thermal modification of wood and a complex study of its properties by magnetic resonance
Researchers from Institute of Physics of Kazan Federal University, Institute of Perspective Research Tatarstan Academy of Sciences, and Nanoscience Department of Institut Neel conducted an investigation of various thermally treated wood species from the Central European part of Russia by magnetic resonance methods and revealed important changes in wood structure which were not available for observation by other methods.
Stochastic resonance, chaos transfer shown in an optomechanical microresonator
Researchers in the School of Engineering & Applied Science at Washington University in St.
Peacock tail feathers shake at resonance and hold eyespots still during courtship displays
As male peacocks shake their long feathers in courtship, the iridescent eyespots remain nearly stationary and captivate females, according a study published April 27, 2016, in the open-access journal PLOS ONE.
Advanced magnetic resonance imaging technology to track cells in the body
The need to non-invasively see and track cells in living persons is indisputable.

Related Magnetic Resonance Imaging Reading:

Magnetic Resonance Imaging: Physical and Biological Principles, 4e
by Stewart C. Bushong ScD FACR FACMP (Author), Geoffrey Clarke PhD FACMP (Author)

Magnetic Resonance Imaging: Physical and Biological Principles, 4th Edition offers comprehensive, well-illustrated coverage on this specialized subject at a level that does not require an extensive background in math and physics. It covers the fundamentals and principles of conventional MRI along with the latest fast imaging techniques and their applications. Beginning with an overview of the fundamentals of electricity and magnetism (Part 1), Parts 2 and 3 present an in-depth explanation of how MRI works. The latest imaging methods are presented in Parts 4 and 5, and the final section... View Details

Magnetic Resonance Imaging: Physical Principles and Sequence Design
by Robert W. Brown (Author), Y.-C. Norman Cheng (Author), E. Mark Haacke (Author), Michael R. Thompson (Author), Ramesh Venkatesan (Author)

New edition explores contemporary MRI principles and practices

Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications.

Magnetic... View Details

Functional Magnetic Resonance Imaging
by Scott A. Huettel (Author), Allen W. Song (Author), Gregory McCarthy (Author)

Functional Magnetic Resonance Imaging was the first textbook to provide a true introduction to fMRI--one that presented material authoritatively and comprehensively, yet was accessible to undergraduate students, graduate students, and beginning researchers. This third edition features an updated discussion of the physiological basis of fMRI that includes recent discoveries about the origins of the BOLD response, new data-driven and computational approaches to fMRI data analysis, explanations of creative approaches to experimental design, and discussions of ethical and methodological... View Details

Magnetic Resonance Imaging in Orthopaedics and Sports Medicine (2 Volume Set)
by David W. Stoller MD FACR (Author)

Now in two volumes, the Third Edition of this standard-setting work is a state-of-the-art pictorial reference on orthopaedic magnetic resonance imaging. It combines 9,750 images and full-color illustrations, including gross anatomic dissections, line art, arthroscopic photographs, and three-dimensional imaging techniques and final renderings. Many MR images have been replaced in the Third Edition, and have even greater clarity, contrast, and precision.

View Details

Magnetic Resonance Imaging of the Brain and Spine
by Scott W. Atlas (Author)

For more than 25 years, Magnetic Resonance Imaging of the Brain and Spine has been the leading textbook on imaging diagnosis of brain and spine disorders. The Fifth Edition continues this tradition of excellence with thorough coverage of recent trends and changes in the clinical diagnosis and treatment of CNS diseases, and how those changes relate to MRI findings. It remains a comprehensive, state-of-the-art reference for all who have an interest in neuroradiology – trainees to experts in the field, basic science researchers, and clinicians.

Key Features:Shows how to... View Details

Principles of Magnetic Resonance Imaging: A Signal Processing Perspective
by Zhi-Pei Liang (Author), Paul C. Lauterbur (Author)

In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles.

The authors use a signal processing approach to describe the fundamentals of... View Details

Magnetic Resonance Imaging Handbook
by Luca Saba (Editor)

Magnetic resonance imaging (MRI) is a technique used in biomedical imaging and radiology to visualize internal structures of the body. Because MRI provides excellent contrast between different soft tissues, the technique is especially useful for diagnostic imaging of the brain, muscles, and heart.

In the past 20 years, MRI technology has improved significantly with the introduction of systems up to 7 Tesla (7 T) and with the development of numerous post-processing algorithms such as diffusion tensor imaging (DTI), functional MRI (fMRI), and spectroscopic imaging. From these... View Details

Lippincott's Magnetic Resonance Imaging Review
by Gregory L. Wheeler BS RT(R) (Author), Kathryn E. Withers RT(R) (MR) (Author)

Here's the perfect review tool for radiologic technologists taking the ARRT's Advanced Qualifications Examination in Magnetic Resonance Imaging. It's packed with over 700 questions and answers covering all aspects of MRI. Detailed explanations of answers and references for further study help reinforce problem areas. View Details

How does MRI work?: An Introduction to the Physics and Function of Magnetic Resonance Imaging
by Dominik Weishaupt (Author), Victor D. Koechli (Author), Borut Marincek (Author)

A succinct introduction to the physics and function of magnetic resonance imaging with an emphasis on practical information. This thoroughly revised second edition is clearly structured. The underlying physical principles of the MR experiment are described and the basic pulse sequences commonly used in clinical MRI. It progresses to more advanced techniques such as parallel imaging and cardiovascular MR imaging. An extensive glossary offers rapid access to MRI terminology and will help those seeking to understand this interesting fascinating subject.

View Details

Magnetic Resonance Imaging (3-Volume Set)
by David D. Stark (Author), William G., Jr. Bradley (Author)

This is the third edition of the reference for the subspeciality of MRI, continuing to provide the kind of comprehensive and authoritative coverage that the previous two successful editions have provided. It gives an exhaustive, encyclopaedic coverage with 2,800 bookpages and 7,320 images/illustrations (320 in colour). All chapters have been exhaustively revised, and the number of images has been increased. This edition will be much more manageable than the previous edition due to the fact that it will be presented in three volumes (the second edition was presented in two volumes), still... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#457 Trowel Blazing
This week we look at some of the lesser known historical figures and current public perception of anthropology, archaeology, and other fields that end in "ology". Rebecca Wragg Sykes, an archaeologist, writer, and co-founder of the TrowelBlazers, tells us about the Raising Horizons project and how their team is trying to shine the spotlight on the forgotten historical women of archaeological, geological, and palaeontological science. And Kristina Killgrove, assistant professor of anthropology at the University of West Florida and science writer, talks about the public perception of the fields of anthropology and archeology, and how those science are represented -...