Nav: Home

New insights into the tumor metabolism

May 11, 2017

Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance. These changes in pH value could be used for example to verify the success of cancer treatments. Up to now, however, there has been no imaging method to render such changes visible in patients. Now a team from the Technical University of Munich (TUM) has developed a pH sensor that renders pH values visible through magnetic resonance imaging (MRI) - in a non-invasive, radiation-free manner.

Four years ago, during a magnetic resonance experiment with tumor cells, TUM physicist Dr. Franz Schilling found signals from a molecule that was highly sensitive towards pH changes. The molecule, which was identified as zymonic acid in subsequent investigations, could play an important role in the future of medical imaging. As a biosensor for pH values, it could provide insights into the body which had been impossible in the past.

"An appropriate pH imaging method would make it possible to visualize abnormal changes in tissue and specifically metabolic processes of tumors," explains Franz Schilling. Areas surrounding tumors and inflammations are usually slightly more acidic than areas surrounding healthy tissue, a phenomenon possibly linked to the aggressiveness of tumors. Schilling sees further potential uses in treatment prognoses: "pH values are also interesting when it comes to evaluating the efficacy of tumor treatments. Even before a successfully treated tumor starts to shrink, its metabolism and thus the pH value of the surrounding area could change. An appropriate pH imaging method would indicate at a much earlier stage whether or not the right approach has been selected."

Schilling is now Director of the working group for Preclinical Imaging and Medical Physics at the Clinic and Polyclinic for Nuclear Medicine in the TUM Klinikum rechts der Isar. In past years, he has joined together with colleagues from the departments of Physics, Chemistry and Medicine to research zymonic acid as a biosensor. In the journal Nature Communications the team describes how it can be used to reliably represent pH values in the bodies of small animals.

MRI-Imaging with time constraints

In order to make pH values visible using zymonic acid, the molecule is injected into the body and then a magnetic resonance imaging (MRI) investigation is made of the object tissue. In greatly simplified terms: In a strong magnetic field, radiowaves excite the nuclear spins of the zymonic acid to oscillation. The reactions of the nuclei are then recorded. This data is used to calculate frequency spectra that in turn provide information about the chemical properties of the molecular surroundings of the nuclei. Ultimately, the pH value at any examined location in the tissue can be represented based on pH-dependent molecular changes in the zymonic acid.

Zymonic acid has to be marked with carbon 13 in order to be visible in MRI images. This means that the molecules contain carbon 13 atoms (13C) instead of "normal" carbon 12 atoms. But zymonic acid marked in this manner is still not measurable: its MRI signal is too weak. "We therefore use a relatively new method, hyperpolarization," explains Stephan Düwel, physicist and first author of the study. "We use a special device to transfer the polarization of electrons to the 13C atomic nuclei using microwaves at very low temperatures, which results in an MRI signal up to 100,000 times stronger." A hot liquid is then used to quickly return the zymonic acid to room temperature.

After this, the scientists need to act quickly. The biosensor is injected intravenously into the organism, then the MRI scan has to be made immediately: It only takes 60 seconds for the signal-amplifying effect of the hyperpolarization to wear off again. "We're currently working on expanding this time window," says Düwel. "On the one hand, we're trying to improve the MRI properties of zymonic acid with appropriate modifications to the molecule; On the other hand, we're looking for other pH-sensitive molecules," explains biochemist Christian Hundshammer, second author of the study.

Advantages compared to other approaches

Franz Schilling and his team have succeeded in showing that their method is sensitive enough to represent medically relevant pH value changes in the organism. Using zymonic acid it is furthermore possible to specifically investigate the pH value outside of the cell membrane: With other biosensors it is often not clear whether measured changes take place inside or outside of the cell (intracellular or extracellular). This is important because the intracellular value is usually stable, while changes in metabolism have a much greater impact on the extracellular value.

In contrast to optical methods, which are limited to superficial penetration into the body because of the low transparency of tissue, there are no limitations to the depth of penetration for MRI. It has furthermore been demonstrated that zymonic acid is not toxic in the concentrations used with small animals and is also created in low concentrations as a by-product of the metabolite pyruvic acid which is present in the body.

"We believe zymonic acid is a highly promising biosensor for patient applications," says Franz Schilling. For the time being, however, additional pre-clinical studies are planned in order to ascertain the advantages of this new imaging biomarker compared to conventional methods and to further improve the spatial resolution of pH imaging.
-end-
The research project was funded by the Collaborative Research Centre 824 (SFB824) "Imaging for Selection, Monitoring and Individualization of Cancer Therapies" led by Prof. Markus Schwaiger.

Publications:

S. Düwel, C. Hundshammer, M. Gersch, B. Feuerecker, K. Steiger, A. Buck, A. Walch, A. Haase, S. J. Glaser, M. Schwaiger, F. Schilling, "Imaging of pH in vivo using hyperpolarized 13C-labeled zymonic acid". Nature Communications (2017). Doi: 10.1038/NCOMMS15126

F. Schilling, S. Düwel, U. Köllisch, M. Durst, R.F. Schulte, S.J. Glaser, A. Haase, A.M. Otto, M.I. menzel. "Diffusion of hyperpolarized 13C-metabolites in tumor cell spheroids using real-time NMR spectroscopy". NMR Biomed., 26:5 (2013) 557-568. doi:10.1002/nbm.2892

http://onlinelibrary.wiley.com/doi/10.1002/nbm.2892/abstract

Further Information:

Dr: Franz Schilling: http://www.sfb824.de/de/Team/Mitarbeiter/members/Schillin_Franz/index.php

Chairs involved:

Prof. Dr. Steffen J. Glaser, Professor for Organic Chemistry http://www.professoren.tum.de/en/glaser-steffen/ Prof. Dr. Markus Schwaiger, Professor for Nuclear Medicine http://www.professoren.tum.de/en/schwaiger-markus/ Prof. Dr. Axel Haase, Biomedical Engineering http://www.ph.tum.de/about/people/vcard/90A1916EC27D45EA/

Contact:

Dr. rer. nat. Franz Schilling
Director of Preclinical Imaging
Klinik und Poliklinik für Nuklearmedizin
Klinikum rechts der Isar
Technical University of Munich
Tel: +49 (0) 89 4140 4586
fschilling@tum.de

High-Resolution Images: https://mediatum.ub.tum.de/1360445

Technical University of Munich (TUM)

Related Magnetic Resonance Imaging Articles:

Fatty liver diagnosis improved with magnetic resonance
Taking tissue samples from the liver to diagnose fatty liver can be replaced in most cases by a painless magnetic resonance investigation.
Manipulating magnetic textures
While the ability to easily control the magnetic properties of small electronic systems is highly desirable for future small electronics and data storage, an effective solution has proven to be extremely elusive.
Magnetic fields at the crossroads
Almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks.
Three magnetic states for each hole
Nanometer-scale magnetic perforated grids could create new possibilities for Computing.
Perspectives on magnetic reconnection
Article describes latest research on magnetic reconnection.
Magnetic Resonance Imaging to predict the salt content of Iberian ham
The University of Extremadura have developed a non-destructive, innocuous method using magnetic resonance, computer vision and statistical calculus that enables one to quantify the salt content of Iberian ham, and classify it according to the degree of penetration of the salt in the muscle.
Thermal modification of wood and a complex study of its properties by magnetic resonance
Researchers from Institute of Physics of Kazan Federal University, Institute of Perspective Research Tatarstan Academy of Sciences, and Nanoscience Department of Institut Neel conducted an investigation of various thermally treated wood species from the Central European part of Russia by magnetic resonance methods and revealed important changes in wood structure which were not available for observation by other methods.
Stochastic resonance, chaos transfer shown in an optomechanical microresonator
Researchers in the School of Engineering & Applied Science at Washington University in St.
Peacock tail feathers shake at resonance and hold eyespots still during courtship displays
As male peacocks shake their long feathers in courtship, the iridescent eyespots remain nearly stationary and captivate females, according a study published April 27, 2016, in the open-access journal PLOS ONE.
Advanced magnetic resonance imaging technology to track cells in the body
The need to non-invasively see and track cells in living persons is indisputable.

Related Magnetic Resonance Imaging Reading:

Magnetic Resonance Imaging: Physical and Biological Principles, 4e
by Stewart C. Bushong ScD FACR FACMP (Author), Geoffrey Clarke PhD FACMP (Author)

Magnetic Resonance Imaging: Physical and Biological Principles, 4th Edition offers comprehensive, well-illustrated coverage on this specialized subject at a level that does not require an extensive background in math and physics. It covers the fundamentals and principles of conventional MRI along with the latest fast imaging techniques and their applications. Beginning with an overview of the fundamentals of electricity and magnetism (Part 1), Parts 2 and 3 present an in-depth explanation of how MRI works. The latest imaging methods are presented in Parts 4 and 5, and the final section... View Details


Magnetic Resonance Imaging: Physical Principles and Sequence Design
by Robert W. Brown (Author), Y.-C. Norman Cheng (Author), E. Mark Haacke (Author), Michael R. Thompson (Author), Ramesh Venkatesan (Author)

New edition explores contemporary MRI principles and practices

Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications.

Magnetic... View Details


Magnetic Resonance Imaging of the Brain and Spine
by Scott W. Atlas (Author)

For more than 25 years, Magnetic Resonance Imaging of the Brain and Spine has been the leading textbook on imaging diagnosis of brain and spine disorders. The Fifth Edition continues this tradition of excellence with thorough coverage of recent trends and changes in the clinical diagnosis and treatment of CNS diseases, and how those changes relate to MRI findings. It remains a comprehensive, state-of-the-art reference for all who have an interest in neuroradiology – trainees to experts in the field, basic science researchers, and clinicians.

Key Features:Shows how to... View Details


Functional Magnetic Resonance Imaging
by Scott A. Huettel (Author), Allen W. Song (Author), Gregory McCarthy (Author)

Functional Magnetic Resonance Imaging was the first textbook to provide a true introduction to fMRI--one that presented material authoritatively and comprehensively, yet was accessible to undergraduate students, graduate students, and beginning researchers. This third edition features an updated discussion of the physiological basis of fMRI that includes recent discoveries about the origins of the BOLD response, new data-driven and computational approaches to fMRI data analysis, explanations of creative approaches to experimental design, and discussions of ethical and methodological... View Details


Advanced Image Processing in Magnetic Resonance Imaging (Signal Processing and Communications)
by Luigi Landini (Editor), Vincenzo Positano (Editor), Maria Santarelli (Editor)

The popularity of magnetic resonance (MR) imaging in medicine is no mystery: it is non-invasive, it produces high quality structural and functional image data, and it is very versatile and flexible. Research into MR technology is advancing at a blistering pace, and modern engineers must keep up with the latest developments. This is only possible with a firm grounding in the basic principles of MR, and Advanced Image Processing in Magnetic Resonance Imaging solidly integrates this foundational knowledge with the latest advances in the field.

Beginning with the basics of signal and image... View Details


Gynecologic Imaging, An Issue of Magnetic Resonance Imaging Clinics of North America, 1e (The Clinics: Radiology)
by Katherine E. Maturen MD MS (Author)

This issue of MRI Clinics of North America focuses on Imaging of the Female Pelvis, and is edited by Katherine Maturen. Articles will include: MR Imaging of Adnexal Mass Characterization; MR Imaging of Abnormal Placentation; MR Imaging of the Pelvic Floor; MR-Pathologic Correlation of Ovarian Neoplasms; MR Imaging of Benign Uterine Pathologies; MR Imaging for Gynecologic Brachytherapy; MR Imaging of Mullerian Fusion Anomalies; MR Imaging in Cervical Cancer; MR Imaging in Female Pelvic Emergencies; MR Imaging in Endometrial Cancer; MR Imaging of the Female Perineum; PET/MR in Gynecologic... View Details


Magnetic Resonance Imaging: The Basics
by Christakis Constantinides (Author)

Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology.

The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the... View Details


Magnetic Resonance Imaging of the Brain and Spine (2 Volume Set)
by Scott W. Atlas (Editor)

Established as the leading textbook on imaging diagnosis of brain and spine disorders, Magnetic Resonance Imaging of the Brain and Spine is now in its Fourth Edition. This thoroughly updated two-volume reference delivers cutting-edge information on nearly every aspect of clinical neuroradiology. Expert neuroradiologists, innovative renowned MRI physicists, and experienced leading clinical neurospecialists from all over the world show how to generate state-of-the-art images and define diagnoses from crucial clinical/pathologic MR imaging correlations for neurologic, neurosurgical,... View Details


Principles of Magnetic Resonance Imaging: Physics Concepts, Pulse Sequences, & Biomedical Applications
by Yi Wang PhD (Author)

Principles of Magnetic Resonance Imaging provides a contemporary (2016) introduction to the fundamental concepts of MRI and connects these concepts to the latest MRI developments. Graphic illustrations are used to visualize the complete solution to the Bloch Equation and to clarify underlying biophysical processes, simplified calculations and specific examples are used to add precision in appreciating abstract concepts, and insightful interpretations and clinical examples are presented to appreciate biomedical information in MRI signal. This book contains three parts: I. Section the body into... View Details


MRI in Practice
by Catherine Westbrook (Author), Carolyn Kaut Roth (Author), John Talbot (Contributor)

Since the first edition was published in 1993, the book has become the standard text for radiographers, technologists, radiology residents, radiologists and even sales representatives on the subject of magnetic resonance imaging. This text is essential reading on postgraduate courses. Furthermore MRI in Practice has come to be known as the number one reference book and study guide in the areas of MR instrumentation, principles, pulse sequences, image acquisition, and imaging parameters for the advanced level examination for MRI offered by the American Registry for Radiologic Technologists... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."