UCLA scientists create first roadmap of human skeletal muscle development

May 11, 2020

An interdisciplinary team of researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA has developed a first-of-its-kind roadmap of how human skeletal muscle develops, including the formation of muscle stem cells.

The study, published in the peer-reviewed journal Cell Stem Cell, identified various cell types present in skeletal muscle tissues, from early embryonic development all the way to adulthood. Focusing on muscle progenitor cells, which contribute to muscle formation before birth, and muscle stem cells, which contribute to muscle formation after birth and to regeneration from injury throughout life, the group mapped out how the cells' gene networks -- which genes are active and inactive -- change as the cells mature.

The roadmap is critical for researchers who aim to develop muscle stem cells in the lab that can be used in regenerative cell therapies for devastating muscle diseases, including muscular dystrophies, and sarcopenia, the age-related loss of muscle mass and strength.

"Muscle loss due to aging or disease is often the result of dysfunctional muscle stem cells," said April Pyle, senior author of the paper and a member of the Broad Stem Cell Research Center. "This map identifies the precise gene networks present in muscle progenitor and stem cells across development, which is essential to developing methods to generate these cells in a dish to treat muscle disorders."

Researchers in Pyle's lab and others around the world already have the capacity to generate skeletal muscle cells from human pluripotent stem cells -- cells that have the ability to self-renew and to develop into any cell type in the body. However, until now, they had no way of determining where these cells fall on the continuum of human development.

"We knew that the muscle cells we were making in the lab were not as functional as the fully matured muscle stem cells found in humans," said Haibin Xi, first author of the new paper and an assistant project scientist in Pyle's lab. "So we set out to generate this map as a reference that our lab and others can use to compare the genetic signatures of the cells we are creating to those of real human skeletal muscle tissue."

To create this resource, the group gathered highly specific data about two different groups of skeletal muscle cells: those from the human body, ranging from the fifth week of embryonic development to middle age, and those derived from human pluripotent stem cells the researchers generated in the lab. They then compared the genetic signatures of cells from both sources.

The group obtained 21 samples of human skeletal muscle tissue from their UCLA collaborators and from colleagues at the University of Southern California and the University of Tübingen in Germany. For the pluripotent stem cell-derived muscle cells, the group evaluated cells created using their own unique method and the methods of several other groups.

The Pyle lab collaborated with the lab of Kathrin Plath, a UCLA professor of biological chemistry and member of the Broad Stem Cell Research Center, to conduct high-throughput droplet-based single-cell RNA sequencing of all of the samples. This technology enables researchers to identify the gene networks present in a single cell and can process thousands of cells at the same time. Leveraging the power of this technology and the Plath lab's bioinformatics expertise, the group identified the genetic signatures of various cell types from human tissues and pluripotent stem cells.

They next developed computational methods to focus on muscle progenitor and stem cells and mapped out their gene networks associated with every developmental stage. This enabled the group to match the genetic signatures found in the pluripotent stem cell-derived muscle cells with their corresponding locations on the map of human muscle development.

The group found that pluripotent stem cell-derived muscle cells produced by all the methods they tried resembled muscle progenitor cells at an early developmental state and did not align to adult muscle stem cells.

In addition to pinning down the true maturity of the lab-produced cells, this analysis also provided details about the other cell types present in skeletal muscle tissue across development and in populations derived from human pluripotent stem cells. These cells could play an essential role in muscle cell maturation and could be critical to improving methods to generate and support muscle stem cells in a dish.

"We found that some methods to generate muscle cells in a dish also produce unique cell types that likely support the muscle cells," said Pyle, who is also a member of the UCLA Jonsson Comprehensive Cancer Center. "And so now our questions are, what are these cells doing? Could they be the key to producing and supporting mature and functional muscle stem cells in a dish?"

Moving forward, Pyle and her colleagues will focus on harnessing this new resource to develop better methods for generating muscle stem cells from human pluripotent stem cells in the lab. She hopes that by focusing on the stem cell-associated gene expression networks and supportive cell types they identified, they can produce high-powered muscle stem cells that can be useful for future regenerative therapies.
-end-
This research was supported by the California Institute for Regenerative Medicine; the National Institutes of Health; a UCLA Broad Stem Cell Research Center Rose Hills Foundation Innovator Grant; the David Geffen School of Medicine at UCLA; the UCLA Jonsson Comprehensive Cancer Center and UCLA Broad Stem Cell Research Center Ablon Scholars Program; the Howard Hughes Medical Institute; a UCLA Broad Stem Cell Research Center Rose Hills Foundation Graduate Scholarship; and the UCLA Tumor Cell Biology Training Program.

University of California - Los Angeles Health Sciences

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.