UMBC gaming researchers develop a new way to render characters with realistic skin

May 11, 2020

Researchers at the University of Maryland, Baltimore County (UMBC) have developed a new solution to render an essential detail in many video games: human skin. The research is published in the Proceedings of the Association for Computing Machinery on Computer Graphics and Interactive Techniques. Marc Olano, associate professor of computer science and electrical engineering at UMBC, led this research alongside Tiantian Xie, Ph.D. '22, computer science. Xie, under the guidance of Olano, has worked with researchers at the gaming company Epic Games, developing a keen understanding of gamers' user experience, including the precise level of realism and detail that players are looking for in human characters.

Game developers seek to create visuals that are as realistic as possible without stepping into the "uncanny valley." This term describes when the graphics in a game attempt to portray a human as closely as possible, and gets close to mimicking real life, but not quite close enough, in a way users find disturbing. This creates an unpleasant feeling in users that might distract from their enjoyment of the game.

In many games, human skin is rendered in such a way that it looks like a plastic object. This plastic look can occur because animators aren't accounting for subsurface scattering - a key element of how light interacts with a textured 3D surface. Subsurface scattering is animators' main priority when it comes to transforming skin from looking like plastic to looking truly real.

Olano's method builds upon research developed by large gaming companies to create realistic depictions of human skin that will also load quickly within a gaming interface. "Our method adds an ability to adaptively estimate how many samples you actually need to get the look that you want without having to do a lot of additional computation to get a smooth image," explains Olano.

The method minimizes the amount of computation needed to create photo-realistic images. Previous techniques were either not realistic enough, or ran too slowly for use in games, negatively affecting the gaming experience. The new method is based on techniques developed for offline film production rendering. Xie, the first author of the paper, states, "Offline rendering techniques are not suitable for real-time rendering because adding the technique itself in real-time introduces a large overhead. Our technique eliminates this overhead."

Olano and his team created an algorithm to determine the pixels that would need to be rendered differently than the others due to light gradient change. Their sampling method uses temporal variance to lower the overall number of changes within each frame while still maintaining a realistic depiction of subsurface scattering. Since fewer changes are needed per frame, the method creates an efficient way of rendering realistic skin within the capabilities of today's computing power.

The algorithm used by Olano's team is built upon a foundation of research that is known and accessible to game developers. This offers a promising path for the gaming industry to pursue realism while maintaining an awareness of the computational ability of an average gaming system. Developers may be able to begin using this technique soon to create more realistic human figures in games, growing the gaming market even more.
-end-


University of Maryland Baltimore County

Related Plastic Articles from Brightsurf:

Is zoom increasing the demand for plastic surgery
Patients are seeking plastic surgery in record numbers, citing their appearance on Zoom as a cause.

Closing the plastic loop
Researchers develop a one-pot, low temperature catalytic method to turn polyethylene polymers into alkylaromatic molecules.

Does science have a plastic problem? Microbiologists take steps to reducing plastic waste
A research group based at the University of Edinburgh's Roslin Institute, developed an approach to reduce plastic waste produced by their lab.

Plastic-eating enzyme 'cocktail' heralds new hope for plastic waste
The UK-US team who re-engineered the plastic-eating enzyme PETase have now created an enzyme 'cocktail' which can digest plastic up to six times faster.

Scientists sound alarm on plastic pollution
A new study shows that despite global commitments to address plastic pollution, growth in plastic waste, or 'plastics emissions' continues to outpace reduction.

Ecologists sound alarm on plastic pollution
Research led by ecologists at the University of Toronto examining plastic pollution entering oceans, rivers and lakes around the world annually, outlines potential impacts of various mitigation strategies over the coming decade.

The persistence of plastic
The amount of synthetic microfiber we shed into our waterways has been of great concern over the last few years, and for good reason: Every laundry cycle releases in its wastewater tens of thousands of tiny, near-invisible plastic fibers whose persistence and accumulation can affect aquatic habitats and food systems, and ultimately our own bodies in ways we have yet to discover.

There is at least 10 times more plastic in the Atlantic than previously thought
Scientists measured 12-21 million tonnes of three of the most common types of plastic in the top 200 metres of the Atlantic.

Seafood study finds plastic in all samples
A study of five different seafoods has found traces of plastic in every sample tested.

A world drowning in plastic pollution
Almost one billion tonnes of plastic will be dumped on land and in the oceans over the period from 2016 to 2040 unless the world acts, say a team of 17 global experts who have developed a computer model to track the stocks and flows of plastic around the world.

Read More: Plastic News and Plastic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.