'Shocking' Stanford video reveals the surprising truth about cell wall growth

May 12, 2014

For a century biologists have thought they understood how the gooey growth that occurs inside cells caused their protective outer walls to expand.

Now, using new microscopic video techniques, Stanford researchers have captured the visual evidence to prove the prevailing wisdom wrong.

"What we observed was not what we had expected," said K.C. Huang, PhD, an assistant professor of bioengineering and the senior author of the findings, which were published online May 12 in the Proceedings of the National Academy of Sciences.

The article, which describes a process known as "osmotic shock," was co-authored by Julie Theriot, PhD, a professor of biochemistry and of microbiology and immunology at Stanford's School of Medicine.

The researchers believe their discovery about the surprising resilience of cell wall growth may help explain why seemingly fragile bacteria such as E. coli can thrive in environments as different as puddles and stomachs. Enrique Rojas, PhD, a postdoctoral scholar in bioengineering, and lead author of the PNAS article, is now in Bangladesh trying to apply this knowledge to help fight cholera.

Gurol Suel, PhD, an associate professor of molecular biology at the University of California-San Diego who was not involved in the work, hailed the discovery as "a paradigm shift."

"Just because a hypothesis has been around for decades does not necessarily imply that it is correct," Suel said, adding that the link between internal pressure and cell growth had emerged from less sophisticated experiments, while the Stanford team used modern techniques to "provide a new molecular understanding of bacterial cell growth."

Life under pressure

Cells are the basic structural units of all life. They were first observed more than 400 years ago after the invention of the microscope. One of the most studied cells in science is E. coli, a sausage-shaped bacterium that can cause food poisoning.

In fact, cells resemble sausages insofar as both consist of outer envelopes stuffed with an inner mass. For decades biologists have believed that the growth of this inner mass, pressing on the outer membrane, is what caused cell walls to grow.

However, using new techniques to isolate and visualize cells in different environments, the Stanford team proved that cell wall growth occurred regardless of the pressures exerted on the cell - whether from inside or out.

Here it is critical to understand that, unlike a sausage, the outer envelope of a cell is alive, dynamic and porous. It is designed to allow water to seep in or out. This is important because cells live in fluids and hence are subject to the pressure of osmosis.

Osmosis relates to the amount of solid materials dissolved in a liquid solution. Stirring sugar into coffee, for instance, increases its osmotic pressure. The more sugar you stir in, the higher the osmotic pressure of the solution.

Life is based on water, so cells have an internal osmotic pressure. When a cell enters a solution with a higher osmotic pressure - such as a sugary liquid - its porous membrane tries to protect the cell by letting water out. This causes the cell membrane to shrivel up, compacting the cell to withstand the pressure from without. Put the same cell back into a normal solution, and the porous cell wall allows water to seep back in, causing the cell to swell to its former size.

Biologists have long supposed that this same pressure dynamic retarded cell wall growth. It made sense given the prevailing wisdom - if cell wall growth were indeed driven by expansion from inside the cell, and outward pressure forced the cell to contract, how could the outer cell wall continue to grow?

In fact, the Stanford team initially designed its experiment to measure precisely how much osmotic pressure slowed cell wall growth in E. coli.

They used microfluidic devices to trap the bacterial cells in tiny chambers. This allowed them to bathe the confined cells, first in highly concentrated sugars (high osmotic pressure), then in normal solutions (low osmotic pressure), while recording precise images of cell contraction or expansion.

Initially, the results seemed to confirm the prevailing wisdom: cells bathed in a sugar solution appeared to grow more slowly.

But whenever the researchers "shocked" the cells by flushing out the sugars and bathing the cells in normal solution they were surprised to see that the cells expanded rapidly - in a matter of seconds -- to a size roughly equivalent to cells growing at full speed in normal solutions. They captured this expansion on video. https://www.dropbox.com/s/n677nzta2o3q7x8/MovieS1.avi (see cutline at bottom of story)

"The cells just didn't seem to care that they had been subjected to frequent and large (osmotic) insults in the chamber," Huang said.

The Stanford researchers came to realize that the cell walls had continued to grow in the sugar solution just as fast as in the normal solution - but the extra mass was shriveled like a raisin. When the cell re-entered the normal solution and water seeped back in through the porous membrane, the now-turgid cell smoothed out like a grape, and all the non-apparent growth became visible.

To follow up this surprising finding, Rojas is in Bangladesh, extending the investigations to study how bacterial pathogens such as Vibrio cholerae respond to rapidly changing fluid environments and how to use this knowledge to fight this scourge.
The research was funded by the National Institutes of Health (grants DP2OD006466 and U54GM072970), the National Science Foundation and the Howard Hughes Medical Institute.

Information about Stanford's Department of Bioengineering, which also supported the work, is available at http://bioengineering.stanford.edu. The department is jointly operated by the School of Engineering and the School of Medicine.

Tom Abate is Associate Director of Communications for Stanford Engineering

Movie cutline:


Cells are porous. They shrink or swell in response to osmosis - the migration of water across a membrane to equalize pressure inside and out. This video uses advanced microscopy to teach biologists something new. They had thought cell walls did not grow as fast under high external osmotic pressure. But this time-lapse movie shows E. coli cells suddenly growing engorged when put under low osmotic pressures, like raisins turning back into grapes, as water rushed back into the cells to reveal wall growth that had occurred, but remained hidden. Credit: Enrique Rojas

Stanford School of Engineering

Related Molecular Biology Articles from Brightsurf:

Likely molecular mechanisms of SARS-CoV-2 pathogenesis are revealed by network biology
Researchers have built an interactome that includes the lung-epithelial cell host interactome integrated with a SARS-CoV-2 interactome.

Cell biology: Your number's up!
mRNAs program the synthesis of proteins in cells, and their functional lifetimes are dynamically regulated.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Scientists find biology's optimal 'molecular alphabet' may be preordained
Life uses 20 coded amino acids (CAAs) to construct proteins.

Molecular biology: Phaser neatly arranges nucleosomes
LMU researchers have, for the first time, systematically determined the positioning of the packing units of the fruit fly genome, and discovered a new protein that defines their relationship to the DNA sequence.

Molecular virologist fights influenza at the molecular level
In research to improve influenza therapies against H7N9 and other influenza strains, Chad Petit and his University of Alabama at Birmingham colleagues have detailed the binding site and mechanism of inhibition for two small-molecule experimental inhibitors of influenza viruses.

The complicated biology of garlic
Researchers generally agree that garlic, used for thousands of years to treat human disease, can reduce the risk of developing certain kinds of cancers, cardiovascular disease, and type 2 diabetes.

Study suggests molecular imaging strategy for determining molecular classifications of NSCLC
Recent findings suggest a novel positron emission tomography (PET) imaging approach determining epidermal growth factor receptor (EGFR) mutation status for improved lung cancer patient management.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Read More: Molecular Biology News and Molecular Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.