Mount Sinai researchers identify changes that may occur in neural circuits due to addiction

May 12, 2014

A research team from the Friedman Brain Institute of the Icahn School of Medicine at Mount Sinai has published evidence that shows that subtle changes of inhibitory signaling in the reward pathway can change how animals respond to drugs such as cocaine. This is the first study to demonstrate the critical links between the levels of the trafficking protein, the potassium channels' effect on neuronal activity and a mouse's response to cocaine. Results from the study are published in the peer-reviewed journal Neuron on May 7, 2014.

The authors investigated the role of sorting nexin 27 (SNX27), a PDZ-containing protein known to bind GIRK2c/GIRK3 channels, in regulating GIRK currents in dopamine (DA) neurons on the ventral tegmental area (VTA) in mice.

"Our results identified a pathway for regulating the excitability of the VTA DA neurons, highlighting SNX27 as a promising target for treating addiction," said Paul A. Slesinger, PhD, Professor, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai.

"Future research will focus on the role that potassium channels and trafficking proteins have in models of addiction," said Dr. Slesinger.

Dr. Slesinger was the lead author of the study and joined by Michaelanne B. Munoz from the Graduate Program in Biology, University of California, San Diego and the Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California.
-end-
The research was supported by grants from the National Institute on Drug Abuse, the Salk Institute Chapman Foundation, the National Institute on Alcohol Abuse and Alcoholism, and the National Institute on Drug Abuse.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services--from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Cocaine Articles from Brightsurf:

Sleep-deprived mice find cocaine more rewarding
Sleep deprivation may pave the way to cocaine addiction. Too-little sleep can increase the rewarding properties of cocaine, according to new research in mice published in eNeuro.

Nucleus accumbens recruited by cocaine, sugar are different
In a study using genetically modified mice, a University of Wyoming faculty member found that the nucleus accumbens recruited by cocaine use are largely distinct from nucleus accumbens recruited by sucrose, or table sugar.

Astrocytes build synapses after cocaine use in mice
Drugs of abuse, like cocaine, are so addictive due in part to their cellular interaction, creating strong cellular memories in the brain that promote compulsive behaviors.

Of all professions, construction workers most likely to use opioids and cocaine
Construction workers are more likely to use drugs than workers in other professions, finds a study by the Center for Drug Use and HIV/HCV Research (CDUHR) at NYU College of Global Public Health.

Chronic cocaine use modifies gene expression
Chronic cocaine use changes gene expression in the hippocampus, according to research in mice recently published in JNeurosci.

Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.

Born to run: just not on cocaine
A study finds a surprising response to cocaine in a novel strain of mutant mice -- they failed to show hyperactivity seen in normal mice when given cocaine and didn't run around.

Cocaine adulterant may cause brain damage
People who regularly take cocaine cut with the animal anti-worming agent levamisole demonstrate impaired cognitive performance and a thinned prefrontal cortex.

Setting affects pleasure of heroin and cocaine
Drug users show substance-specific differences in the rewarding effects of heroin versus cocaine depending on where they use the drugs, according to a study published in JNeurosci.

One in 10 people have traces of cocaine or heroin on their fingerprints
Scientists have found that drugs are now so prevalent that 13 percent of those taking part in a test were found to have traces of class A drugs on their fingerprints -- despite never using them.

Read More: Cocaine News and Cocaine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.