Nav: Home

An old new weapon against emerging Chikungunya virus

May 12, 2016

Since 2013, the mosquito-borne Chikungunya virus has spread rapidly through South America and the Caribbean, and is now threatening Southern Europe and the southern US. It causes flu-like symptoms with fever and joint pains, which in some cases can last for months with occasional fatalities. No treatment or vaccine exists so far - serving as an urgent reminder of just how poorly the time-consuming process of drug development is able to meet the threat posed by newly emerging viruses. Scientists at the Max Planck Institute for Infection Biology in Berlin have now teamed up with colleagues at the Paris-based Institut Pasteur to validate a new approach in the quest for a therapy - combining high-throughput screening for host cell proteins without which the virus cannot replicate, with so-called 'drug repositioning', i.e. utilizing an existing drug for new indications. They identified two existing compounds that were effective against the virus in an animal model. Their findings not only bring a Chikungunya treatment within potential reach, but also provide the proof of principle that this approach can be rapidly successful for newly emerging infectious diseases.

The recent Ebola and Zika outbreaks have highlighted how quickly new epidemics can spread in the age of global travel and how helpless modern medicine still is when faced with infectious diseases for which no treatment has been generated. A case in point is Chikungunya fever, which has caused a rising epidemic since it first spread to the Caribbean and Latin America, with more than a million reported cases, and is now poised to spread into the US. While the symptoms are frequently mild, some patients experience crippling arthritic pain that can last for years.

Standard drug development procedures are both expensive and time consuming and the success rates are low. However, emerging epidemics require fast reaction. Professor Thomas F. Meyer with his group at the Max Planck Institute for Infection Biology have now pioneered a new strategy to achieve faster success: In a first step the overall requirement of host factors involved in the infection are identified and then, in a second phase, known drugs effective against the identified host factors are used to block the infection. This rational drug-repositioning strategy could speed up the development process dramatically and allow fast proof of concept.

The principle behind the rational drug-repositioning strategy is the emerging concept that all pathogens depend on proteins produced by the host cell in order to replicate successfully. The challenge lies in the identification of such critical host cell targets. The team found more than 100 host proteins to be required by Chikungunya, by using a robotic system at the Max Planck Institute for Infection Biology to knock out each human gene in turn, before infecting the cells with the virus and analysing how well it was able to replicate. Together with the Marc Lecuit's group at Institut Pasteur, who are leading experts on the disease, and collaborators at the Steinbeis Innovation Center and the Charité in Berlin, the University of München and the Institute of Technology in Tartu, Estonia, they next searched for established compounds known to target the most promising host factors before testing them in vitro and in animal models of Chikungunya infection. This process resulted in two drugs, one of them an already widely used antipsychotic, which exhibit therapeutic activity in mice at safe doses, especially when used in combination. Further studies are now required to develop an optimized clinical therapy.

Excitingly, the results also revealed another potential benefit: 'When we compared the requirement for every human gene in multiple unrelated viruses' explains Dr Alexander Karlas, a leading virologist at MPIIB. 'We found that several of the host proteins required by the Chikungunya virus are also required by several other, unrelated viruses as well.' This potentially opens up a path for developing a range of broadly acting antivirals - which may give a much-needed boost in the battle against emerging viruses.
-end-
Original publication

Karlas, A., Berre, B., Couderc, T., Varjak, M., Braun, P., Meyer, M., Gangneux, N., Karo-Astover, L., Weege, F., Raftery, M., Schönrich, G., Klemm, U., Wurzlbauer, A, Bracher, F., Merits, A., Meyer, T.F. and Lecuit, M

A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

Nature Communications; 12 May, 2016 (DOI: 10.1038/ncomms11320)

Max-Planck-Gesellschaft

Related Infection Articles:

Sensing infection, suppressing regeneration
UIC researchers describe an enzyme that blocks the ability of blood vessel cells to self-heal.
Boost to lung immunity following infection
The strength of the immune system in response to respiratory infections is constantly changing, depending on the history of previous, unrelated infections, according to new research from the Crick.
Is infection after surgery associated with increased long-term risk of infection, death?
Whether experiencing an infection within the first 30 days after surgery is associated with an increased risk of another infection and death within one year was the focus of this observational study that included about 660,000 veterans who underwent major surgery.
Revealed: How E. coli knows how to cause the worst possible infection
The discovery could one day let doctors prevent the infection by allowing E. coli to pass harmlessly through the body.
UK study shows most patients with suspected urinary tract infection and treated with antibiotics actually lack evidence of this infection
New research presented at this week's European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Amsterdam, Netherlands (April 13-16, 2019) shows that only one third of patients that enter the emergency department with suspected urinary tract infection (UTI) actually have evidence of this infection, yet almost all are treated with antibiotics, unnecessarily driving the emergence of antimicrobial resistance.
Bacteria in urine doesn't always indicate infection
Doctors should think carefully before testing patients for a urinary tract infection (UTI) to avoid over-diagnosis and unnecessary antibiotic treatment, according to updated asymptomatic bacteriuria (ASB) guidelines released by the Infectious Diseases Society of America (IDSA) and published in Clinical Infectious Diseases.
Subsidies for infection control to healthcare institutions help reduce infection levels
Researchers compared three types of infection control subsidies and found that under a limited budget, a dollar-for-dollar matching subsidy, in which policymakers match hospital spending for infection control measures, was the most effective at reducing the number of hospital-acquired infections.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.
The medicine of the future against infection and inflammation?
Researchers at Lund University in Sweden, have in collaboration with colleagues in Copenhagen and Singapore, mapped how the body's own peptides act to reduce infection and inflammation by deactivating the toxic substances formed in the process.
More Infection News and Infection Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.