Nav: Home

Skull specializations allow bats to feast on their fellow vertebrates

May 12, 2016

Vampire mania aside, bats don't go for a diet that would make for an exciting Hollywood blockbuster. Most are insectivores, chomping on insects. Some large species prefer fruit. And yes, a few like blood.

But over the 52-million-year history of these flying mammals, a few have evolved a taste for their fellow vertebrates. Now biologists at the University of Washington and the Burke Museum of History and Culture are shedding light on how these so-called "carnivorous bats" adapted to the daunting task of chowing down their backboned prey.

"Vertebrate prey are a unique challenge for carnivorous bats," said lead author Sharlene Santana, a UW assistant professor of biology and curator of mammals at the Burke Museum. "They eat flesh, bones and everything else within their prey, and we wanted to understand the evolutionary changes that help them accomplish this."

Santana and co-author Elena Cheung, a UW undergraduate, wanted to understand how these adaptations influenced changes in skull shape and size. When talking about diet, this is no small question.

"The skull and mandible provide attachment points for the jaw muscles, and variation in these attachment sites results in differences in bite force, and how wide of a gape the jaws are capable of," said Santana.

Their findings, published May 11 in the Proceedings of the Royal Society B, reveal surprising patterns of change that helped carnivorous bats catch and eat vertebrates. Though there are currently more than 1,300 species of bats, only a few dozen eat vertebrates, from fish to land animals -- including a few species that eat other bats. This evolutionary transition -- from insects to vertebrates - has occurred at least six times over bat history.

Santana and Cheung took high-resolution images of skulls from 140 bats across 35 species, representing all six lineages of carnivorous bats as well as bats that eat insects, or a combination of vertebrates and insects. The skulls were from the Burke Museum and the Los Angeles County Museum.

They used these images in a complex computer-based comparison of landmarks on the skulls, which takes into account the position, scale and orientation of those features to determine differences in shape among species.

"The unique features found in the skulls of carnivorous bats may reflect the adaptations that would have enabled them to adopt a diet of vertebrate prey instead of insects," said Santana.

Through this process, Santana and Cheung also discovered that larger animal-munching bats -- whether they ate insects or vertebrates -- tended to have longer snouts, which may allow them to consume relatively larger prey. Carnivorous bats tended to be larger and had skulls that emphasized a strong bite force when the jaws are opened wide.

Surprisingly, the main exception to this trend were carnivorous bats that ate a particular subset of vertebrates -- fish. The skulls of fish-eating bats were optimized for a strong bite force at a relatively narrow jaw gape.

"Many fish have flatter bodies compared to land vertebrates, which may explain the distinctive jaws and bite force of fish-eating bats," said Santana. "In addition, fish-eating bats must spend a lot of time chewing the carcass thoroughly, breaking up those sharp and tiny bones into chunks that are easier to swallow and digest."

Santana and Cheung also collected data from the skulls of other carnivorous vertebrates, including a polar bear, puma, lion and several species of hyenas and wolves. This wider comparison helped them understand if the skulls of carnivorous bats showed adaptations shared by other mammalian carnivores.

"This is important to understand because, unlike other mammalian carnivores, carnivorous bats don't have the strong, blade-like teeth that can tear flesh -- these bats chew and consume the whole body of their prey, bones and all," said Santana.

She and Cheung found that the skulls of carnivorous bats emphasized a strong bite force at the expense of gape width when compared to other mammalian carnivores, perhaps indicating that some of the key trade-offs in feeding and chewing strategies enabled these bats to subsist on a vertebrate-rich diet.

Santana hopes their conclusions will inform ecological studies of carnivorous bats, which by and large reside in tropical and sub-tropical environments around the globe. In addition, Santana says this study demonstrates how ecological factors like diet can so heavily depend on the adaptive changes that evolution provides.
-end-
Their research was funded by the University of Washington.

Link to full release with image: http://www.washington.edu/news/2016/05/11/skull-specializations-allow-bats-to-feast-on-their-fellow-vertebrates/

For more information, contact Santana at 206-221-6488 or ssantana@uw.edu.

University of Washington

Related Bats Articles:

Bats are the major reservoir of coronaviruses worldwide
Results of a five-year study in 20 countries on three continents have found that bats harbor a large diversity of coronaviruses (CoV), the family of viruses that cause severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS).
Friends help female vampire bats cope with loss
When a female vampire bat loses a close relative, she may starve, because she depends on her mother and daughters to share blood by regurgitation.
Some bats develop resistance to devastating fungal disease
Bat populations in some places in North America appear to have developed resistance to the deadly fungal disease known as white-nose syndrome.
The tale of the bats, dark matter and a plastic surgeon
What happens when a plastic surgeon meets a bat expert zoologist and a paleobiologist?
Roads 'a serious threat' to rare bats
Roads present a serious threat to bat populations, indicating that protection policies are failing.
Study documents African monkeys eating bats
Primates and bats may interact directly, but their behavioral and predator-prey interactions are poorly documented, and detailed reports of their interactions have been rare, until now.
Skull specializations allow bats to feast on their fellow vertebrates
Over their 52-million-year history, a few bats have evolved a taste for their fellow vertebrates.
Bats' flight technique could lead to better drones
Long-eared bats are assisted in flight by their ears and body, according to a study by researchers at Lund University in Sweden.
What bats reveal about how humans focus attention
Researchers discover how a bat's brain determines what sounds are worth paying attention to.
How bats recognize their own 'bat signals'
A new Tel Aviv University study identifies the mechanism that allows individual bats to avoid noise overlap by increasing the volume, duration and repetition rate of their signals.

Related Bats Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.