Antiferromagnetic fluoride nanocrystals

May 12, 2020

When magnetic materials are nanometric at least in one dimension, the surface effect often dominates the static and transport behaviors due to the limited long-range order and broken translation symmetry. The perturbations in spin-spin correlation length and unperfect spin coordination structures make low-dimensional magnetic materials an ideal platform for exploring magnetism in reduced dimensions. Low dimension materials, especially those in two-dimensional (2D) pose a conceptual flatland for mechanically flexible, engineerable and biocompatible devices with complex functionalities via a patterning or assembling manner to integrated objects.

As a typical two sublattice antiferromagnetic order, rutile-type fluorides MF2 (M=Mn, Fe, and Co) are proven very useful in the context of antiferromagnetic spintronics, especially in the THz range with optical manipulation. However, it remains a challenge to initiate and sustain the solution processability of fluorides in a predictable, controlled and deterministic manner, leaving some instructive information unclarified, such as how the size effect matters, and how the subtle interplay between the surface spin arrangement and phase transitions operates.

In a new research paper published in the Beijing-based National Science Review, researchers from Peking University, Shenzhen University and the National Institute for Materials Science (NIMS) report an asymmetric passivation proposal to control the dimension of fluorides nanocrystals. In their protocols, four kinds of surfactants, i.e. oleic acid (OAc), oleyl amine (OAm), tetraethylenepentamine (TEPA) and oleyl alcohol (OAl) are evaluated through density functional theory (DFT) methods to clarify their role in controlling the growth manner.

'According to the calculation results, a preferential capping on (001) facet is found in all the evaluated molecules, revealing that the growth direction of the c-axis is impeded. Besides, the asymmetric adsorption of {110} facets with subsequent blocking serves as the origin of rod formation in a direction perpendicular to (110) or (1-10) facet when OAc, OAm and OAl molecules are used.' they declare.

'The experimental results are in good agreement with theoretical predictions, where FeF2 nanocrystals with well-defined crystalline orientations are obtained.' the authors add.

The authors further introduced high-resolution X-ray photoelectron spectrum, recoil-free 57Fe Mössbauer spectrometry, high angle annular dark-field scanning electron microscopy and their corresponding elemental maps, and electron energy loss spectroscopy to discriminate the surface and phase information. A possible oxygen trapping manner was verified, which greatly affect the magnetic behavior of the system.

'A cluster spin-glass like surface layer is identified from the disrupted translation symmetry at the surface, which exerts a pinned FM moment upon the AFM core. Anomalous positive exchange bias HE and enhanced magnetic phase transition temperature are observed due to the interactions between pinned FM moments and the associated structural order parameters, which is qualified within the framework of Landau theory.' the researchers state.

'These high-quality fluorides nanocrystals are strong candidates for flexible antiferromagnetic devices and sensors.' they add.

'Moreover, we believe that this approach of anisotropic direction of growing process will pave the way to the solution synthesis of other low-dimensional halide nanocrystals for emerging spintronics, such as the 2D FeCl2 and CrI3.' the researchers predict.
-end-
This research received funding from the National Key R&D Program of China, the National Natural Science Foundation of China and the Shenzhen Science and Technology Project.

See the article:

Ziyu Yang, Huihui Zhang, Junjie Xu, Renzhi Ma, Takayoshi Sasaki, Yu-Jia Zeng, Shuangchen Ruan, Yanglong Hou Anisotropic Fluoride Nanocrystals Modulated by Facet-specific Passivation and Their Disordered Surfaces National Science Reviewhttps://doi.org/10.1093/nsr/nwaa042

Science China Press

Related Nanocrystals Articles from Brightsurf:

A new kind of liquid scintillator via hybridizing perovskite nanocrystals with organic molecules
Highly-efficient scintillators are playing an essential role in various fundamental science and industrial applications.

CU student helps bridge teams at Clemson
Three teams of researchers at Clemson University have joined forces to unravel some of the mysteries surrounding perovskite nanocrystals, which are semiconductors with numerous applications, including LEDs, lasers, solar cells and photodetectors.

Nanocrystals from recycled wood waste make carbon-fiber composites tougher
In a new study, Texas A&M University researchers have used a natural plant product, called cellulose nanocrystals, to pin and coat carbon nanotubes uniformly onto the carbon-fiber composites.

A safe and powerful safeguard for your whole body against deadly radiation
IBS scientists have reported a highly effective and safe nanocrystal to combat dangers doses of radiation by growing manganese oxide (Mn3O4) nanocrystals on top of the Cerium oxide (CeO2) nanocrystals.

Antiferromagnetic fluoride nanocrystals
Recently, researchers from Peking University, Shenzhen University and National Institute for Materials Science (NIMS) report that the altered passivation of specified facets can direct the synthesis of fluoride nanocrystals into dimension-controlled products in a colloidal approach.

Scientists develop stable luminescent composite material based on perovskite nanocrystals
An international team of scientists that includes researchers from ITMO University has developed a new composite material based on perovskite nanocrystals for the purpose of creating miniature light sources with improved output capacity.

Ultrafast stimulated emission microscopy of single nanocrystals in Science
ICFO researchers report on a new ultrafast stimulated emission microscopy technique that allows imaging of nano-objects and investigating their dynamics.

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability
Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the perovskite's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.

Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.

University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization

Read More: Nanocrystals News and Nanocrystals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.