Nav: Home

Lighting the path for cells

May 12, 2020

Highly complex organisms can arise from a single cell, which is one of the true miracles of nature. Substances known as morphogens have an important role in this development, namely by signalling to cells where they should go and what they should do. These signal molecules guide biological processes such as the formation of body axes or the wiring of the brain. To investigate such processes in more detail, researchers have to be able to position the signal molecules among living cells in three-dimensional space. This was made possible by a new method developed by Nicolas Broguiere and his colleagues in the research group headed by Marcy Zenobi-Wong. Their work is being published today in the journal Advanced Materials.

Drawing with light

"Our approach makes it possible to distribute bioactive molecules in a hydrogel with a high degree of precision," says Zenobi-Wong, Professor of Tissue Engineering and Biofabrication in the Department of Health Sciences and Technology at ETH Zürich. When living cells are encapsulated in the hydrogel, they can detect these biochemical signals. One such signal, nerve growth factor, determines the direction in which nerve fibres grow. In a method called two-photon patterning, the researchers used a laser to draw a 3D pattern of this molecule in the hydrogel.

"Wherever the light is focused in the material, it triggers a chemical reaction that anchors the nerve growth factor to the hydrogel," Broguiere explains. "We carefully optimised the design of the photosensitive hydrogel so that the signal molecules attach only in the areas exposed to the laser - and nowhere else." Their new approach can create "paintings" of morphogens with details one thousand times smaller than a millimetre - the size of a single nerve fibre. The researchers could then observe through a microscope how the neurons follow the mapped-out pattern. "With this new method, we can now guide neurons effectively in 3D, using their own biochemical language," Broguiere says.

When nerve fibres tear

Many biologists have long dreamt of instructing cells to grow in a particular direction. The new approach developed by the ETH research group brings them one step closer to fulfilling that dream. Zenobi-Wong and Broguiere believe their innovation also offers potential benefits for medicine - for example, if a nerve is severed during an accident, the reconnection happens haphazardly and full function is not restored. "I don't want to give the impression that we're ready to start treating patients with this method," Zenobi-Wong says, "but in the future, a refined version of our approach could help show neurons the right path directly in the body, thereby improving recovery from neural injuries."
-end-
Reference

Broguiere N, Lüchtefeld I, Trachsel L, Mazunin D, Rizzo R, Bode JW, Lutolf MP, and Zenobi-Wong M. Morphogenesis guided by 3D patterning of growth factors in biological matrices. Advanced Materials. (2020). doi: 10.1101/828947

ETH Zurich

Related Hydrogel Articles:

Coaxing single stem cells into specialized cells
Researchers at the University of Illinois Chicago have developed a unique method for precisely controlling the deposition of hydrogel, which is made of water-soluble polymers commonly used to support cells in experiments or for therapeutic purposes.
Novel alkaline hydrogel advances skin wound care
Effective wound care requires the maintenance of optimal conditions for skin and tissue regeneration.
Hydrogel paves way for biomedical breakthrough
Dubbed the ''invisibility cloak'', engineers at the University of Sydney have developed a hydrogel that allows implants and transplants to better and more safetly interact with surrounding tissue.
Hydrogel mimics human brain with memorizing and forgetting ability
Hokkaido University researchers have found a soft and wet material that can memorize, retrieve, and forget information, much like the human brain.
Diabetic mice improve with retrievable millimeter-thick cell-laden hydrogel fiber
Researchers from The University of Tokyo developed a novel fiber-shaped hydrogel transplant for the treatment of type 1 diabetes mellitus.
Smart windows that self-illuminate on rainy days
A joint research team from POSTECH and KAIST develops self-powering, color-changing humidity sensors.
Lighting the path for cells
ETH researchers have developed a new method in which they use light to draw patterns of molecules that guide living cells.
Active droplets
Using a mixture of oil droplets and hydrogel, medical active agents can be not only precisely dosed, but also continuously administered over periods of up to several days.
First-of-its-kind hydrogel platform enables on-demand production of medicines, chemicals
A team of chemical engineers has developed a new way to produce medicines and chemicals on demand and preserve them using portable ''biofactories'' embedded in water-based gels called hydrogels.
SUTD develops revolutionary reversible 4D printing with research collaborators
Researchers from SUTD worked with NTU to revolutionise 4D printing by making a 3D fabricated material change its shape and back again repeatedly without electrical components
More Hydrogel News and Hydrogel Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.