Ancient rocks show high oxygen levels on Earth 2 billion years ago

May 12, 2020

Earth may have been far more oxygen-rich early in its history than previously thought, setting the stage for the evolution of complex life, according to new research by scientists at the University of Alberta and the University of Tartu in Estonia. The study provides evidence for elevated oxygen levels 2 billion years ago and flies in the face of previously accepted models.

The international team of researchers, led by UAlberta scientists, studied a Russian drill core containing shungite--a unique carbon-rich sedimentary rock deposited 2 billion years ago. The material provides several clues about oxygen concentrations on Earth's surface at that time, including strikingly high levels of molybdenum, uranium, and rhenium, as well as elevated uranium isotope ratios.

"These trace metals are only thought to be common in Earth's oceans and sediments when oxygen is abundant," explained Kaarel Mänd, a PhD candidate in the University of Alberta's Department of Earth and Atmospheric Sciences and lead author of the study. "These trace metal concentrations are unrivaled in early Earth's history, suggesting elevated levels of oxygen at the time when the shungite was deposited."

What's puzzling, Mänd explained, is that many widely accepted models of Earth's carbon and oxygen cycles predict that shungite should have been deposited at a time of rapid decrease in oxygen levels.

"What we found contradicts the prevailing view," says Mänd, who is completing his PhD under the supervision of Professor Kurt Konhauser. "This will force the Earth science community to rethink what drove the carbon and oxygen cycles on the early Earth."

The new findings also provide insight into the evolution of complex life. Earth's "middle age" represents the backdrop for the appearance of eukaryotes. Eukaryotes are the precursors to all complex life, and require high oxygen levels in their environment to thrive. This study strengthens the idea that suitable conditions for the evolution of complex life on early Earth began much earlier than previously thought.

Future research will examine the delay between the initial rise of oxygen and the appearance and spread of eukaryotes, remaining an area of active research, one that University of Alberta and University of Tartu researchers are well positioned to help answer.
-end-
This research was funded by the Archimedes Foundation, the Estonian Research Council, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Research Council of Norway.

This paper, "Paleoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event," was published in the journal Nature Geoscience (doi: 10.1038/s41561-020-0558-5).

University of Alberta

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.