Researchers Synthesize Compounds For New Class Of Antibiotics

May 12, 1998

(Boston, Mass.) -- Researchers at Boston University and Scriptgen Pharmaceuticals, Inc., have successfully synthesized two compounds that open the door to the development of an entirely new class of antibiotics for use against today's increasingly drug-resistant bacteria as well as emerging forms of bacteria.

In a recent issue of the Journal of Organic Chemistry, the research team reported that they have chemically synthesized myxopyronin A and B, two natural compounds known to block replication of drug-resistant strains of bacteria. Before this breakthrough, the compounds could only be isolated from their bacterial source, a process that yielded quantities too small to be usable.

From a therapeutic standpoint, the compounds look particularly promising because of their selectivity. Harmful bacteria contain DNA-dependent polymerase enzymes, as do humans. Myxopyronin A and B attack the bacterial enzymes while leaving the human host alone.

In recent years, the incidence of infectious diseases has soared, along with deaths resulting from them. At the same time, the need for new antibiotics has risen steadily as bacteria have developed a resistance to existing drugs. The worldwide market for anti-infective drugs is now estimated to be $34 billion, and it is still growing.

"This is an exciting opportunity for the development of a new type of antibiotic," says James Panek, a professor of chemistry who led Boston University's participation in the project. "The chemical synthesis provides us with the means for generating the materials that can lead to new pharmaceuticals."

Scriptgen, a Waltham, MA, company that develops drugs to control the expression of genes, is now developing the processes for converting the raw materials of myxopyronin A and B into viable antibiotics.

"This is a significant breakthrough from a chemistry point of view, but it's the first step in the process, " said Michael G. Palfreyman, Vice President of Research and Development at Scriptgen. "Now we need to take myxopyronin and make it more drug-like. The synthesis was designed to allow us to make many analogs--many different candidates--so that doctors can choose the best one for the desired activity."

May 12, 1998

-- 30 --

Boston University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to