Key powerhouse enzyme linked to cancer development

May 13, 2002

May 9, 2002 Scientists at the Johns Hopkins Kimmel Cancer Center have discovered that an enzyme found in a tumor cell's energy center has a special relationship with a gene that controls cancer cell growth and death. Their findings, published in the May 14 issue of the Proceedings of the National Academy of Sciences, may offer a road map to anti-cancer therapies designed to manipulate the genetic pathway that switches the enzyme on and off.

The enzyme PRDX3 inhabits mitochondria, the tiny organelles that provide energy to cells and a meeting ground for regulation of cell life and death. "What this research suggests is that we might be able to shut down tumors by learning how to control this enzyme," says Chi Dang, M.D., Ph.D., director of the division of hematology and professor of medicine, cell biology, pathology and oncology.

Proteins made by the PRDX3 gene, known to be overexpressed in breast cancer, chew up or reduce oxidants, called peroxides entering the cell. Hopkins investigators used a scanning method to "skip" through pieces of the PRDX3 gene and precisely pinpoint areas where certain proteins bind to it, acting like ignition switches to increase expression. The investigators found that a key ignition switch controlling activation of PRDX3 is a well-known cell growth-promoting cancer gene called c-MYC.

To find out how c-MYC and PRDX3 work together, the scientists looked at different levels of PRDX3 activation in rat and human cancer cell lines where c-MYC was turned on. When they shut down PRDX3, turning off its ability to make its enzyme, the mouse tumors stopped growing. When they turned it back on, tumors grew rapidly.

"Think of PRDX3 as a light bulb and c-myc as the light switch. If you remove the light bulb even though the switch may be on, the lamp still doesn't work," explains Dr. Dang. "In this case, we've removed the light bulb rendering the switch powerless."

"These results show that changing PRDX3 activation can alter how tumors grow. Now, our challenge is to find out in which cancers this pathway is most important and what drugs may do the job," says Dr. Dang.
-end-
This research was funded by the National Cancer Institute, National Institutes of Health.

Other participants in this research were Diane Wonsey and Karen Zeller of Johns Hopkins.

Diane R. Wonsey, Karen I. Zeller, and Chi V. Dang, "The c-MYC target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation," Proceedings of the National Academy of Sciences, May 2002, Vol. 99, Issue 10: pp. 6649-6654.

On the Web:
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins: www.hopkinskimmelcancercenter.org

Johns Hopkins Medical Institutions' news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs' direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

On a POST-EMBARGOED basis find them at http://www.hopkinsmedicine.org.

Johns Hopkins Medicine

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.