Nav: Home

Under Pressure: New technique could make large, flexible solar panels more feasible

May 13, 2016

A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology. A paper describing the research by scientists at Penn State University publishes on May 13, 2016, in the journal Advanced Materials.

"We have developed a new, high-pressure, plasma-free approach to creating large-area, thin-film semiconductors," said John Badding, professor of chemistry, physics, and materials science and engineering at Penn State and the leader of the research team. "By putting the process under high pressure, our new technique could make it less expensive and easier to create the large, flexible semiconductors that are used in flat-panel monitors and solar cells and are the second most commercially important semiconductors."

Thin-film silicon semiconductors typically are made by the process of chemical vapor deposition, in which silane -- a gas composed of silicon and hydrogen -- undergoes a chemical reaction to deposit the silicon and hydrogen atoms in a thin layer to coat a surface. To create a functioning semiconductor, the chemical reaction that deposits the silicon onto the surface must happen at a low enough temperature so that the hydrogen atoms are incorporated into the coating rather than being driven off like steam from boiling water. With current technology, this low temperature is achieved by creating plasma -- a state of matter similar to a gas made up of ions and free electrons -- in a large volume of gas at low pressure. Massive and expensive reactors so large that they are difficult to ship by air are needed to generate the plasma and to accommodate the large volume of gas required.

"With our new high-pressure chemistry technique, we can create low-temperature reactions in much smaller spaces and with a much smaller volume of gas," said Badding. "The reduced space necessary allows us, for the first time, to create semiconductors on multiple, stacked surfaces simultaneously, rather than on just a single surface. To maximize the surface area, rolled-up flexible surfaces can be used in a very simple and far more compact reactor. The area of the resulting rolled-up semiconducting material could, upon further development, approach or even exceed a square kilometer."
-end-
In addition to Badding, the research team included Rongrui He, a postdoctoral researcher at Penn State; and Todd D. Day, Justin R. Sparks, and Nichole F. Sullivan, graduate students at Penn State.

The research was funded by the National Science Foundation (grant # DMR-1107894) and the Penn State Materials Research Science and Engineering Center.

CONTACTS

John Badding:
jbadding@pearl.chem.psu.edu
1-814-777-3054

Barbara Kennedy (PIO)
science@psu.edu
1-814 863 4682 To download a high-resolution image that illustrates this research, double-click on the Web-quality image at http://science.psu.edu/news-and-events/2016-news/Badding5-2016.

IMAGE CAPTION

High-pressure deposition inside rolled-up, flexible substrates allows for extremely large-area, uniform-thickness, hydrogenated, amorphous silicon films that are useful for applications such as flat-panel displays and solar cells.

IMAGE CREDIT

Penn State University

Penn State

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...