Nav: Home

WVU researcher studies incurable blood disease usually diagnosed in children

May 13, 2019

MORGANTOWN, W.Va.--Treating a stubborn blood disease that strikes children may come down to tweaking energy production in stem cells, suggests research out of West Virginia University.

Wei Du, an assistant professor in the School of Pharmacy, is investigating the link between how stem cells make energy and how Fanconi anemia develops. The disease makes it harder for bone marrow to churn out the blood cells our bodies need to fight illnesses, stanch bleeding and transport oxygen. It also makes repairing damaged DNA more difficult.

"Almost all of the kids with Fanconi anemia will develop leukemia eventually," said Du, who co-leads the Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program at the WVU Cancer Institute. According to St. Jude Children's Research Hospital, the average lifespan for people with the disease is between 20 and 30 years.

Du and her research team discovered that, in animal models of Fanconi anemia, stem cells tended to use aerobic--or oxygen-based--processes to make energy. That's unusual: normally stem cells found in bone marrow and blood prefer an anaerobic process that doesn't rely on oxygen.

This metabolic distinction suggests that Fanconi anemia's diverse symptoms--from fatigue and shortness of breath, to frequent bruising and nosebleeds--may hinge on cellular-level energy production.

In fact, a single step in the metabolic process seems crucial. The researchers identified a specific signaling pathway--called the p53-TIGAR axis--that was overexpressed in the anemic models. The overexpression correlated to the aerobic "rerouting" of the stem cells' energy production.

The current standard of care for Fanconi anemia includes bone marrow transplant, but as Du explained, it works less than one-third of the time. "In people with Fanconi anemia, blood cells aren't the only ones that have a mutation," she said. "So do other cells in other parts of the body that support stem cell survival." For that reason, the patients' bodies can't support the replication of healthy, transplanted normal cells properly, and their anemia persists.

But Du's findings could lead to new and better treatments for Fanconi anemia. One promising option is a drug that inhibits the overactivation of the p53-TIGAR signal. Preventing p53-TIGAR from inordinate activation may guide the stem cells' energy production back to the usual pathway.

Her insights might even deepen researchers' understanding of gene-therapy techniques. "If you know more about diseases of the stem cell--how they regulate energy, and how they regulate differentiation and self-renewal--you probably can improve gene therapy as well," Du said. "If you can manually balance the energy production of the diseased stem cells then maybe this can be a benefit when you harvest those gene-delivery cells and transplant them into the patient."
-end-


West Virginia University

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...