Nav: Home

How acoustics detected artillery in WWI

May 13, 2019

WASHINGTON, D.C. May 13, 2019 -- During World War I, William Lawrence Bragg led a team of engineers in the development of an acoustic method to locate enemy artillery, work that was so successful that it was soon used widely throughout the British army.

The method, known as sound ranging, was also adopted by the U.S. Army when they joined the war, and earned Bragg a military decoration from the British armed forces.

Bragg's story will be presented at the 177th Meeting of the Acoustical Society of America by ASA Fellow Dan Costley, a researcher in sound ranging with the U.S. Army Engineer Research and Development Center.

The ASA meeting runs May 13-17, at the Galt House in Louisville, Kentucky.

In 1914, two researchers in Paris had begun working on the idea that the difference in the time that sound arrived could be used to precisely locate artillery batteries: Charles Nordmann, an astronomer, and Lucien Bull, a medical researcher who at the time was working on a method to record heart beats.

The pair had already conducted experiments in the woods near Paris, when Australian-born Bragg was shifted from his post in the British cavalry to work on the problem in 1915.

Over the next few years Bragg built a team that improved the technique until it was able to pinpoint the location of enemy guns to within 10 meters.

"It's impressive the way they innovated and solved problems," Costley said.

Some of their creative innovations included wrapping the microphone in camouflage netting to cut wind noise and turning an ammunition box into a microphone that was well-tuned to the low frequencies of the artillery explosions.

The new Tucker microphone, named after its inventor William Tucker, a member of Bragg's team and London University physicist, was a major advance for the system.

A heated platinum wire over the mouth of the ammunition box was the active element. The resonance from low-frequency booms disturbed the air around the wire, cooling it, changing its resistance and creating the signal pulse.

Unlike the previous carbon microphones, it could distinguish between the launch explosion of the gun and the sonic boom it generated as it traveled overhead, and even distinguish between the types of artillery.

Another innovation was the "harp" galvanometer: Its strings were an array of copper wires between magnets, each connected to separate microphones hidden across a kilometer or more in either direction.

When an electrical signal came from the microphones, the current would cause the wire to move due to the interaction with the magnetic field. A continuous roll of film underneath the wires recorded the exact timing of the pulse from each microphone much more accurately than earlier methods based on human observations -- an approach the Germans used until the end of the war.

Mere minutes after the attack the film could be developed and the calculations completed to reveal the enemy location.

"People have digitized the films and can play them back -- you can hear the cannons," said Costley.

Ultimately the success of the group was due to Bragg's scientific leadership, explained Costley. He was familiar with working collaboratively, having worked with his father, William Henry Bragg, on X-ray diffraction. The pair's insights into X-rays earned them the 1915 Nobel Prize in physics. William Lawrence Bragg was 25 years old at the time and remains the youngest person to win the physics Nobel.

"Bragg encouraged the innovation that solved a lot of the practical problems. He was really good about giving credit to people on his team," said Costley.
-end-
Presentation #1aPA1, "Artillery location: Battlefield acoustics in the First World War," will be at 8:45 a.m., Monday, May 13, in the Jones room of the Galt House in Louisville, Kentucky.

USEFUL LINKS

Main meeting website: http://acousticalsociety.org/asa-meetings/

Technical program: https://ep70.eventpilotadmin.com/web/planner.php?id=ASASPRING19

Press Room: http://acoustics.org/world-wide-press-room/

WORLD WIDE PRESS ROOM

In the coming weeks, ASA's World Wide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300-500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at http://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION

We will grant free registration to credentialed staff journalists and professional freelance journalists. If you are a reporter and would like to attend, contact the AIP Media Line at 301-209-3090 or media@aip.org. Our media staff can also help with setting up interviews and obtaining images, sound clips or background information.

LIVE MEDIA WEBCAST

A press briefing will be webcast live from the conference Tuesday, May 14, in the Laffoon Room of the Galt House Hotel in Louisville, Kentucky. Register at https://aipwebcasting.com to watch the live webcast. The schedule will be posted at the same site as soon as it is available.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

Acoustical Society of America

Related Microphone Articles:

Unlock your smartphone with earbuds
A University at Buffalo-led research team is developing EarEcho, a biometric tool that uses modified wireless earbuds to authenticate smartphone users via the unique geometry of their ear canal.
New way to make micro-sensors may revolutionize future of electronics
Researchers at Binghamton University, State University of New York researchers have found a way to improve the performance of tiny sensors that could have wide-reaching implications for electronic devices we use every day.
Stanford physicists count sound particles with quantum microphone
A device that eavesdrops on the quantum whispers of atoms could form the basis of a new type of quantum computer.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
A wearable vibration sensor for accurate voice recognition
Professor Kilwon Cho of Chemical Engineering and Professor Yoonyoung Chung of Electronic and Electric Engineering from POSTECH successfully developed a flexible and wearable vibration responsive sensor.
More Microphone News and Microphone Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...