Nav: Home

Understanding relationship break-ups to protect the reef

May 13, 2019

Unravelling the secrets of the relationship between coral and the algae living inside it will help prevent coral bleaching, University of Queensland researchers believe.

Bleaching occurs when the symbiotic relationship between coral and algae breaks down - corals under environmental stress disconnect from their algae partners, which means they lose their energy source.

Institute for Molecular Bioscience (IMB) researcher Dr Cheong Xin Chan said most studies to date have been about the corals rather than the algae.

"Little is known about the molecular mechanisms underlying their symbiotic relationship -- how can we understand the break-up if we don't understand the relationship in the first place?" he said.

Dr Chan's team is using genomic data to look for genes that enhance resilience in the algae and help coral adapt to the environmental shifts created by climate change.

The algae that live within coral are dinoflagellates, a type of phytoplankton - tiny photosynthetic organisms that manufacture their own food harvesting energy from sunlight.

"This algae family is very diverse," Dr Chan said.

"Some are toxic, causing the harmful algal blooms known as 'red tides', while others provide bioluminescence or grow in sea ice, and many are free-living."

IMB researcher Mr Raul González-Pech said the algal genome is about half the size of the human genome.

"Nothing is straightforward with these algae as they have some of the weirdest genomes we've ever seen," he said.

"In a human cell, the DNA is organised into 23 pairs of chromosomes but the DNA of these algal cells is so tightly packed that we still don't know exactly how many chromosomes they have."

Previous studies were based on bacteria or parasites, with researchers predicting these algae would have a similar evolutionary path, but genetic data shows they operate very differently to other intracellular inhabitants.

"In our earlier analysis of the genomes, we found that these algae may be capable of sexual reproduction, which may enhance their capacity to adapt to the environment," Mr González-Pech said.

The researchers now want to compare the genomics of the symbiotic and free-living species to understand how the differences in their genomes correspond to differences in their lifestyles.

That would provide more clues about their symbiotic relationship with coral.

"Dinoflagellates are vital for the survival of Australia's Great Barrier Reef," Dr Chan said.

"We can use genomic information to address fundamental questions of what makes these algae successful symbiotic partners in the coral reefs, for example, how they contribute to heat-resistance in certain corals more than others.

"We have sequenced nine of these algal genomes in four years - the sequencing technology has come so far and allowed us to be the most prolific lab for generating dinoflagellate genomic data."

"Understanding this relationship between algae and coral is one of the most challenging problems.

"Here at IMB, we are motivated by the most complex puzzles."
-end-
The research, in collaboration with Emeritus Professor Mark Ragan at IMB and Professor Debashish Bhattacharya at Rutgers University, was published in Trends in Ecology & Evolution (doi.org/10.1016/j.tree.2019.04.010) and supported by two Australian Research Council grants.

Media: IMB Communications, communications@imb.uq.edu.au, +61 (0)4 0566 1856;

Dr Cheong Xin (CX) Chan, c.chan1@uq.edu.au, +61 7 3346 2617, +61 416 310 786.

University of Queensland

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
New DNA synthesis technique promises rapid, high-fidelity DNA printing
Today, DNA is synthesized as an organic chemist would, using toxic chemicals and error-prone steps that limit accuracy and thus length to about 200 base pairs.
The changing shape of DNA
The shape of DNA can be changed with a range of triggers including copper and oxygen - according to new research from the University of East Anglia.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.