Nav: Home

Physicists discover new type of spin waves

May 13, 2019

Current technologies for information transfer and processing are challenged by fundamental physical limits. The more powerful they become, the more energy they need and more heat is released to the environment. Also, there are physical limits on the smallness and efficiency of communication devices. The recent discovery by physicists at Martin Luther University Halle-Wittenberg (MLU) and Lanzhou University in China offers a new route for progress on these issues. In the latest edition of the scientific journal Nature Communications, they describe a novel type of spin waves that can be used to transmit and process information with considerably higher efficiency and lower energy consumption.

Conventional IT applications are based on electric charge currents. "This results inevitably in energy losses heating up the environment" said MLU physicist Professor Jamal Berakdar. The researcher added that more energy is needed and also dissipated to operate more powerful and compact devices. Thus, it is very challenging to maintain the pace of advancement based on charge-current based technology. For their study, the teams led by Professor Berakdar and Professor Chenglong Jia of Lanzhou University examined therefore alternative concepts for data communication and processing.

Their work revolved around something known as magnons. "These are waves that are stimulated in ferromagnets by just a fraction of the energy needed for generating the required charge currents," explained Berakdar. "Magnons can be used to transmit signals and for logical operations in various components while producing virtually no heat." In this latest study, the German-Chinese research team describes a type of twisted magnons for which the twist or the winding number is protected against damping. Technically the twist is related to magnon orbital angular momentum and can be controlled in magnitude and orientation by electric voltages. This renders possible a multiplex twist-based signal encoding and transmission across large distances. According to the scientists, the reported results open the way to high density information transmission via magnons. In addition to the energy efficiency, the magnon wavelengths are controllable and short compared to optical waves which itself is advantageous for miniaturization. Magnonic elements can also be integrated in existing technologies.
-end-
This work is supported by the National Natural Science Foundation of China (Nos. 11474138 and 11834005), the German Research Foundation (No. SFB 762 and SFB TRR 227), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT-16R35).

Martin-Luther-Universität Halle-Wittenberg

Related Energy Articles:

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.
Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.
Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.
How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
More Energy News and Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.