Nav: Home

Bone cells suppress cancer metastases

May 13, 2019

PHILADELPHIA -- In breast cancer, there are cases of women and men whose cancer returns in their bones 20-30 years after they were treated for their primary disease and thought they were cancer-free. This phenomenon always puzzled Jefferson researcher Karen Bussard, PhD. How is it possible that breast cancer cells from a primary tumor are able to reach the bones when a patient is deemed "cancer-free" after treatment? What was happening in bones that allowed the cancer cells to remain there for up to 30 years, alive but in a sleeping state, only to re-awaken decades later? In a step towards answering these questions, Dr. Bussard recently discovered a type of bone cell that can subdue cancer cells, slowing their growth, even in one of the most aggressive types of breast cancer: triple negative.

The results, published in Breast Cancer Research, raise intriguing questions about how these bone cells exert their sleep-inducing influence, and whether it's possible to replicate and permanently turn cancers dormant.

"Cancer has this uncanny ability to turn other cell types it comes in contact with to the cancer cell's advantage," says Dr. Bussard, Assistant Professor of Cancer Biology at Thomas Jefferson University and a researcher at the Sidney Kimmel Cancer Center -- Jefferson Health. "For example, cancer cells can turn the immune cells that should kill it, into its own guards. However, we have now found a population of bone cells that not only resists, but subdues the cancer. It's fascinating."

Together with co-first authors and graduate students, Alexus D. Kolb and Alison B. Shupp and others, Dr. Bussard probed how bone cells change once they interact with breast cancer cells in the bone. Specifically, they looked at osteoblasts - a kind of bone cell that lays down new bone, like cement, during growth and repair.

The research team showed that the osteoblast cells from mice as well as humans drastically changed their function after interacting with bone-metastatic breast cancer cells. Earlier studies had shown that in advanced stage bone-metastatic breast cancer patients, osteoblasts stopped working; failing to produce a matrix that stabilizes and strengthens bone. The changes lead to loss of bone density that is common in these patients. In her new work, Dr. Bussard and colleagues showed that in earlier stages of the disease, when cancer cells first enter the bone, rather than producing new bone, osteoblasts may divert their energy toward producing factors to halt cancer cell growth.

When osteoblasts from humans or mice were exposed to triple negative or estrogen receptor positive breast cancer cells that had migrated to the bone, the osteoblasts released factors that changed cancer cell behavior. These factors were able to swing the balance away from limitless cancer cell growth, and toward restoring production of the cell-cycle checkpoint protein p21, which stops metastatic breast cancer cells from replicating endlessly. Dr. Bussard's team showed that cancer growth slowed in the presence of osteoblasts that had come in contact with metastatic breast cancer cells. The osteoblasts that did not interact with metastatic breast cancer cells, on the other hand, were unable to slow cancer cell growth.

"The bone-building osteoblast cells have a complex relationship with cancer," says Dr. Bussard. "In advanced stages of the disease, we know that metastatic breast cancer cells can co-opt the normal cells of the bone to help cancer metastases thrive. However, our new work suggests that during early stages of the disease, such as when metastatic breast cancer cells first migrate to the bone, these cancer-exposed osteoblasts resist and fight cancer growth."

"Understanding how breast cancer cells prosper through metastasis to bone has been a long held goal of the breast cancer research community. Dr. Bussard's breakthrough discoveries pave the way toward developing new strategies to prevent or treat metastatic disease", says Karen E. Knudsen, PhD, EVP of Oncology Services and Enterprise Director of the Sidney Kimmel Cancer Center -- Jefferson Health.

The next step, says Dr. Bussard, is to fully characterize the molecules that osteoblasts use to reign in cancer growth, and see whether it's possible to turn that understanding toward treatments that can put cancer cells to sleep forever.
-end-
The research was supported by NIH grant number R00CA178177, Commonwealth of Pennsylvania - Department of Health SAP 4100072566, and the Sidney Kimmel Cancer Center Support Grant 5P30CA056036-17 (Bone Biorepository Bank).

Article Reference: Alexus D. Kolb, Alison B. Shupp, Dimpi Mukhopadhyay, Frank C. Marini, Karen M. Bussard "Osteoblasts are 'educated' by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment," Breast Cancer Research,DOI: 10.1186/s13058-019-1117-0, 2019.

Media Contact: Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu

Thomas Jefferson University

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.