Nav: Home

Trade could be key to balancing conservation of freshwater sources and food security

May 13, 2019

An IIASA study published in the journal Nature Sustainability today, evaluated whether water for the environment could be prioritized under growing competition from other sectors. The results indicate that this could be achieved by shifting crop production from water scarce- to water abundant regions and tripling international food trade.

Globally, the call to conserve or restore the ecological health and functioning of rivers and their associated wetlands for both human use and biodiversity is gaining traction and in many countries, efforts in this regard are already being supported by national and regional policies and legislation. To successfully implement these conservation efforts, methods have been developed to define environmental flows, in other words, the quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems, as well as the human livelihoods and wellbeing that depend on them. Global freshwater resources are however increasingly under pressure, with about 70% of water abstracted from freshwater ecosystems being used for the irrigation of agricultural crops. Around 40% of our food is in fact produced on irrigated lands, while the demand for water from industry, energy, and municipalities is also set to increase in the future.

According to the researchers, previous global assessments of the food-water-environment nexus did not adequately take into account the water necessary to sustain the health of freshwater ecosystems - in some instances the dimension of "water for the environment" was not considered at all. The team wanted to understand the impact that strong protection and enforcement of environmental flow requirements would have on food security and to what extent the trade of crop and livestock products between countries would be able to buffer the impacts of enforcing these requirements.

"Irrigation is often considered a silver bullet for achieving food security because irrigated croplands are often more productive than rainfed croplands due to the fact that they allow farmers to produce crops in areas and during months when rainfall is inadequate. We wanted to see if water for the environment could be prioritized even under growing competition from other sectors," explains Amanda Palazzo, a researcher with the IIASA Ecosystems Services and Management Program and one of the authors of the study.

The study examined how changes in the water available for irrigation impacted cropland use and expansion employing the IIASA Global Biosphere Management Model (GLOBIOM) for the analysis. Palazzo says that in the analysis, changes in rainfall due to climate change, growing competition for water from industry and households, and protections for environmental flows were considered as critical challenges for irrigated agriculture to meet the growing future demand for agricultural products. The time scale was also considered significant from both an environmental flow and a crop production perspective. When the monthly demands from municipal and industrial users were considered, the team were surprised by how little water was actually available for irrigation or the environment in regions that may appear to be water abundant at a regional and annual level.

The findings indicate that an increase in land use by 100Mha would be required to double food production by 2050 in order to meet the projected food demand of the world's growing population. There will also be a need to reallocate food production in water-abundant regions and reduce water intensive crops in dry areas. Trade policies may have an important role to play to adapt to climate change as an additional 10-20% trade flow from water-abundant regions to water-scarce regions will be needed to sustain environmental flow requirements on a global scale. In addition, the findings show that retiring irrigated cropland or shifting back to rainfed cropland may be necessary to protect environmental flow requirements and meet the growing demands from other users.

"Sustaining environmental flow requirements would only increase trade by 15%, while decreasing irrigated areas by 20-30%," says study lead author Amandine Pastor, an IIASA alumna who is currently associated with the Institute of Research for Development in France and the University of Lisbon in Portugal. "In this regard, sustainable and innovative practices such as growing crops within appropriate agro-climatic zones (e.g., planting less water-intensive crops in dry areas), developing urban and vertical agriculture, and limiting the share of meat in human diets, should be adopted." She however cautions that care should be taken with the reallocation of resources so that some regions do not deplete others.

The study shows how important it is to realize that natural resources are limited. The results indicate that it could be possible to maintain both food security and environmental flow requirements by 2050, despite the growing population and the rising impacts of climate change. "Environmental regulations on water abstractions, sustainable food production, and deforestation are fundamental to avoiding local environmental degradation, and water resources should be carefully managed between human needs and ecosystem requirements to ensure a sustainable future for humanity," says Pastor.

"Policies or targets that aim to provide adequate food and water needs for a growing population may be at odds with policies to protect the environment. Understanding how the trade-offs for sustainability and development goals play out at local context is therefore extremely important," concludes Palazzo.
-end-
Reference

Pastor A, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, Kabat P, & Ludwig F (2019). The global nexus of food-trade-water sustaining environmental flows by 2050. Nature Sustainability DOI: 10.1038/s41893-019-0287-1

Contacts:

Researcher contacts

Amandine Pastor
Postdoc Research Scholar
Tel: +33 783 757 582
amandine.pastor22@gmail.com

Amanda Palazzo
Research Scholar
IIASA Ecosystems Services and Management Program
Tel: +43 2236 807 457
palazzo@iiasa.ac.at

Press Officer

Ansa Heyl
IIASA Press Office
Tel: +43 2236 807 574
Mob: +43 676 83 807 574
heyl@iiasa.ac.at

About IIASA:

The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, and Europe. http://www.iiasa.ac.at

International Institute for Applied Systems Analysis

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...