Collagen fibres grow like a sunflower

May 13, 2019

Collagen fibrils are a major component of the connective tissues found throughout the animal kingdom. The cable-like assemblies of long biological molecules combine to form tissues as varied as skin, corneas, tendons or bones. The development of these complex tissues is the subject of a variety of research efforts, focusing on the steps involved and the respective contributions of genetics and physical chemistry to their development. Now, two researchers at the Universite Paris-sud in Orsay, France, have shed new light on how complex collagen fibrils form. In a new study published in EPJ E, the authors focus on one of the hierarchical steps, in which molecules spontaneously associate in long and dense axisymmetric fibres, known as type I collagen fibrils.

The connective tissues are hierarchical structures which undergo several phases of association, producing fibril organisations adapted to various functions within living organisms. In this study, the spontaneous association step under scrutiny is unique because the diameter of the fibre remains constant throughout its growth, while the end of growth manifests a characteristic parabolic profile. After studying several possible models, the researchers concluded the most likely explanation is that the fibres spread out from the fibre axis, along a stem, similar to how a sunflower's florets grow.

The authors note that phyllotaxis, or the growth of leaves, ensures the best packing possible in contexts of circular symmetry, as is the case with dense collagen fibres. "However, owing to the complexity of the material, appropriate experimental studies, along directions suggested by the model itself, are needed in order to establish it firmly," says Jean Charvolin, co-author of the study.
-end-
References

J. Charvolin, J-F. Sadoc (2019), Type I collagen fibrils: from growth morphology to local order, Eur. Phys. J. E 42:49. DOI 10.1140/epje/i2019-11812-1

Contact

Sabine Lehr
Springer Physics Editorial
Tel: +49-6221-4487-8336
Email: sabine.lehr@springer.com

Springer

Related Collagen Fibrils Articles from Brightsurf:

Catch and release: collagen-mediated control of PEDF availability
Extracellular ligand PEDF holds cell fate in its hands, inducing cell death or promoting survival depending on which host cell receptor it binds to.

Study shows biocell collagen ingestion reduced signs of UVB-induced photoaging
New research finds BioCell Collagen Ingestion to reduce signs of UVB-Induced photoaging, which accounts for a significant amount of visible skin damage.

Gold nanoparticles uncover amyloid fibrils
EPFL scientists have developed powerful tools to unmask the diversity of amyloid fibrils, which are associated with Alzheimer's disease and other neurodegenerative disorders.

Tumbleweeds or fibrils: Tau proteins need to choose
Simulations by Rice scientists suggests two paths tau proteins may take in the brains of patients with Alzheimer's and Pick's diseases.

Beauty sleep could be real, say Body Clock biologists
Biologists from The University of Manchester have explained for the first time why having a good night's sleep really could prepare us for the rigours of the day ahead.

Team's fabricated corneal tissue allows closer look at how eyes heal
University of Texas at Dallas researchers have demonstrated a technique in the lab for fabricating tiny strands of collagen called fibrils to facilitate further research on the eye's repair process.

Collagen fibers encourage cell streaming through balancing act
Engineers from the McKelvey School of Engineering at Washington University have shown that the length of collagen fibers has a roll to play in the ability of normal cells to become invasive.

Study shows BioCell collagen can visibly reduce common signs of skin aging within 12 weeks
In one of the most substantial studies of a skin health supplement, BioCell Collagen®, was found to visibly reduce common signs of skin aging, including lines and wrinkles, within 12 weeks of daily use.

The seeds of Parkinson's disease: amyloid fibrils that move through the brain
Researchers at Osaka University used microbeam X-ray diffraction to study the ultrastructure of Lewy bodies in post-mortem brains of Parkinson's disease patients.

GW pilot study finds collagen to be effective in wound closure
Researchers in the George Washington University Department of Dermatology found that collagen powder is just as effective in managing skin biopsy wounds as primary closure with non-absorbable sutures.

Read More: Collagen Fibrils News and Collagen Fibrils Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.