Nav: Home

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices

May 13, 2019

The collaborative effort of researchers from Skoltech, SB RAS Nikolaev Institute of Inorganic Chemistry, and RAS Institute for Problems of Chemical Physics translated into the development of advanced lead-free semiconductors for solar cells, based on complex antimony and bismuth halides. The results of their study were published in the Journal of Materials Chemistry A and showcased on the journal's cover page.

The solar cells based on complex lead halides with a perovskite-type structure are coming into sharp focus thanks to their low cost, ease of manufacturing and enhanced light-conversion efficiency of >24%. However, their mass production and wider use are hampered by toxicity and low stability of complex lead halides. To overcome these obstacles, researchers worldwide are working on designing alternative lead-free photoactive materials, particularly, based on bismuth and antimony halides. So far these solar cells have displayed poor light-conversion performance, which suggests that the charge carriers are not generated efficiently enough in the photoactive layer or have difficulty reaching the electrodes.

The team of researchers from Skoltech, SB RAS Nikolaev Institute of Inorganic Chemistry, and RAS Institute for Problems of Chemical Physics showed that the actual reason behind this is the non-optimal structure of the bismuth and antimony compounds.

"We found out that unhindered vertical transport of holes and electrons, which is essential for efficient operation of solar cells, is prevented by the low dimensionality of the anionic sublattice in these compounds, which is typically 0D and sometimes 1D or very rarely 2-D. As a consequence, this class of materials can work efficiently in lateral photodetectors but not in solar cells," explains professor Pavel Troshin of the Skoltech Center for Energy Science and Technology.

Earlier, the same team suggested increasing the lattice dimensionality in bismuth and antimony complexes by introducing linker molecules, such as molecular iodine. Using this approach, which was presented in Chemistry: A European Journal, the scientists have succeeded in creating new semiconductor materials based on complex halides of bismuth and antimony with iodine, which are currently the subject of intensive research worldwide.

The same team has also designed a fundamentally new family of solar cell materials based on the perovskite-like complex antimony bromides, ASbBr6(where A is a positively charged organic ion). The ASbBr6-based solar cells have exhibited record-high light-conversion efficiency for antimony and bismuth halides. The results of this study were published in the journal Advanced Energy Materials. According to the project lead Pavel Troshin, a real breakthrough in their research came with this study, which opens up new horizons in the development of new semiconductor materials for perovskite electronics.
This study was made available online in December 2018 ahead of final publication in print in March 2019.

Skolkovo Institute of Science and Technology (Skoltech)

Related Solar Cells Articles:

Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
New properties of perovskite solar cells
Perovskite solar cells are lighter and cheaper than silicon, their production is non-toxic.
Making solar cells is like buttering bread
Formamidinium lead iodide is a very good material for photovoltaic cells, but getting the correct and stable crystal structure is a challenge.
More Solar Cells News and Solar Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.