Nav: Home

Biochemical compound responsible for blood pressure drop in sepsis is discovered

May 13, 2019

A study conducted by an international group of researchers has overturned the understanding of life-threatening inflammatory diseases such as sepsis, pointing to a biochemical agent that may be involved in the rapid decline in blood pressure that occurs in the advanced stage of sepsis and usually causes the patient's death. This discovery could pave the way for novel therapeutic approaches.

Sepsis is the leading cause of death in Brazilian intensive care units (ICUs), with a mortality rate of approximately 50%. The disease is triggered by a dysregulated response of the organism to an infectious agent. For reasons that are still poorly understood, the immune system begins to combat not only the infectious agent but also the organism itself, leading to organ dysfunction. The body's biochemical responses to inflammation alter the structure of blood vessels, leading to a sharp drop in blood pressure and potentially to organ failure and death.

For almost ten years, kynurenine -- a metabolic product of the amino acid tryptophan -- was believed to be one of the factors that cause vasodilation (widening of blood vessels) and sharply falling blood pressure during sepsis. The new study shows that the problem can also be caused by singlet oxygen, an electronically excited state of oxygen (1O2). Singlet oxygen is a highly reactive molecule with two paired electrons in the same orbital or different orbitals.

The team that conducted the study included Brazilian researchers at the Center for Research on Redox Processes in Biomedicine (Redoxome), one of the Research, Innovation and Dissemination Centers (RIDCs) funded by São Paulo Research Foundation - FAPESP.

According to an article published in Nature, singlet oxygen is involved in the formation of a signaling molecule that regulates vascular tone and blood pressure during the inflammation characteristic of sepsis.

On the basis of experiments involving nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry, the researchers demonstrated the formation of a different vasodilator from the one previously identified. The compound, which they call cis-WOOH, is formed by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in a reaction involving tryptophan - an essential amino acid found in proteins - and singlet oxygen in the presence of high levels of hydrogen peroxide (H2O2).

The study was led by Roland Stocker, a researcher at the Victor Chang Cardiac Research Institute in Sydney, Australia. Other researchers from Australia also participated, alongside colleagues from Brazil, China, Germany, Japan and the United Kingdom.

"We found that the levels of H2O2 in blood vessel walls rise very sharply during life-threatening inflammatory processes such as sepsis, reaching extremely high levels. In addition, tryptophan is 'pumped' to these arterial endothelial cells," said Paolo di Mascio, Full Professor in the Biochemistry Department of the University of São Paulo's Chemistry Institute (IQ-USP) in Brazil. He belongs to Redoxome and coauthored the article. Fernanda Prado, another member of Redoxome, also participated in the study.

The group observed abundant expression of the enzyme IDO1 inside the cells. "This cocktail of H2O2, IDO1 and tryptophan extends the functions of IDO1, which now processes tryptophan differently, forming the hydroperoxide cis-WOOH. So both the activity of IDO1 and the formation of singlet oxygen are necessary for tryptophan to cause vasodilation," Di Mascio said.

In vivo experiments using a mouse model showed that cis-WOOH acts as a signaling molecule, inducing arterial relaxation and decreasing blood pressure.

According to the researchers, their findings on the biochemical component responsible for the fall in blood pressure in sepsis and on new biological functions for the enzyme IDO1 could serve as a starting point for the discovery of a refined repertoire of redox signaling paths, in which reactive oxygen species such as singlet oxygen act as biological messengers.

The article notes that IDO1 is a potential target for therapy against a range of pathologies as well as sepsis. The findings also suggest that singlet oxygen and IDO1 may be involved in modulating the immune response against tumors, favoring tumor evasion, so that the inhibition of IDO1 could be a major target in anticancer drug development.

This is the first time singlet oxygen has been shown to play a physiopathological signaling role in mammals. The molecule has well-established roles in photosynthetic plants, bacteria and fungi.

'CSI' of sepsis

The previous study, also led by Stocker in collaboration with part of the same group of researchers, reported that the signaling molecule cyclic guanosine monophosphate (cGMP) activates the protein kinase G1α (PKG1α) when kynurenine dilates blood vessels.

According to the authors of the recent study, however, vasodilation mediated by cis-WOOH requires far less cGMP than vasodilation mediated by kynurenine but still requires activation of PKG1α. In contrast to the previous study, researchers have now proven that carefully purified kynurenine does not cause vasodilation in sepsis.

An article published by Nature in its "News and Views" section compares the search for the "true culprit" that dilates blood vessels in sepsis to a "classic whodunnit".

"One of the authors of our article published a study in Nature nine years ago in which kynurenine was blamed for the vasodilation process," Di Mascio said. "After publication of the data, however, other researchers tried and failed to reproduce the results. This troubled the authors considerably. After all, science is reproducibility."

The search for the "true culprit" in sepsis vasodilation required complex logistics and research coordination involving laboratories in six different countries, he added.

"Coordinating the research at all these labs was a major operation. Our samples came over from Australia in liquid nitrogen. We eventually concluded that for the study published nine years ago, the researchers had probably purchased kynurenine contaminated with this other product, cis-WOOH," Di Mascio explained.

He recalled that the compound created by the reaction between tryptophan and singlet oxygen was identified and characterized in a study published in 2008 by Graziella Ronsein, a professor at IQ-USP.

"The important point is that this latest study could lead to new treatments and novel approaches," he stressed. "Mortality due to sepsis is very high worldwide. I believe we'll see interesting developments that will be positive for society as a result of this study."
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Blood Pressure Articles:

Effect of reducing blood pressure medications on blood pressure control in older adults
Whether the amount of blood pressure medications taken by older adults could be reduced safely and without a significant change in short-term blood pressure control was the objective of this randomized clinical trial that included 534 adults 80 and older.
Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.
Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.
New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.
Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.
Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.
The Lancet Neurology: High blood pressure and rising blood pressure between ages 36-53 are associated with smaller brain volume and white matter lesions in later years
A study of the world's oldest, continuously-studied birth cohort tracked blood pressure from early adulthood through to late life and explored its influence on brain pathologies detected using brain scanning in their early 70s.
Blood pressure control is beneficial, is it not?
Until recently, physicians had generally assumed that older adults benefit from keeping their blood pressure below 140/90 mmHg.
The 'blue' in blueberries can help lower blood pressure
A new study published in the Journal of Gerontology Series A has found that eating 200g of blueberries every day for a month can lead to an improvement in blood vessel function and a decrease in systolic blood pressure in healthy people.
Discovery could advance blood pressure treatments
A team of Vanderbilt University Medical Center researchers, working with the US Department of Veteran's Affairs (VA), has discovered genetic associations with blood pressure that could guide future treatments for patients with hypertension.
More Blood Pressure News and Blood Pressure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.