The makings of a crystal flipper

May 13, 2020

Insights into a flipping crystal could further research into the development of autonomous robots.

Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions. Their findings, published in a Chemistry Europe's journal, bring scientists closer to understanding how to build molecular robots that can prosecute complex tasks.

A multitude of self-controlled functions, such as metabolism, goes on inside our bodies night and day. Scientists want to fabricate materials and molecular architectures that can similarly function on their own.

Hokkaido University physical chemist Yoshiyuki Kageyama and collaborators had previously observed a self-driven oscillating flipping motion in a crystal formed of azobenzene molecules and oleic acid. Azobenzene molecules are formed of two rings composed of carbon and hydrogen atoms, connected by a double nitrogen bond. These molecules receive incident light and convert the light energy to mechanical motion, leading to the repetitive flipping motion.

The scientists wanted to better understand what drives this autonomous motion, so they conducted intensive tests on crystals composed only of the azobenzene.

They found that the molecules inside the crystals were arranged in alternating sparse and dense layers. The dense layers hold the crystal together and prevent it from decomposing, while the sparse ones enable the photoreaction.

The group also found the crystal flipped differently, or didn't flip, when a polarized light -- which oscillate in a single direction -- was applied with different angles. This suggested azobenzene molecules play different roles depending on their position in the crystal; When they receive light, some molecules act as reaction centers to initiate the periodic behavior while other molecules modulate the motion.

"This autonomous behaviour represents a response to information contained in the energy source, the angle of polarized light in this case, results in a rich variety of motions," says Yoshiyuki Kageyama. "We hope our findings support further research into constructing self-governable molecular robots."
-end-


Hokkaido University

Related Crystals Articles from Brightsurf:

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Fat crystals trigger chronic inflammation
A congenital disorder of the fat metabolism can apparently cause chronic hyperreaction of the immune system.

First ever observation of 'time crystals' interacting
For the first time ever, scientists have witnessed the interaction of a new phase of matter known as 'time crystals'.

'Blinking" crystals may convert CO2 into fuels
Imagine tiny crystals that ''blink'' like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Rubies on sapphire: Recipe for making crystals in flux
The effect of the holding temperature and solubility curve of rubies was elucidated, for Al2O3:Cr in MoO3 from 1050 to 1200.

Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.

New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.

The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.

Read More: Crystals News and Crystals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.