How the body makes triglycerides

May 13, 2020

Doctors regularly warn their patients that having high levels of triglycerides, a major dietary fat, can increase the risk of heart disease, diabetes, obesity and fatty liver disease. There is considerable interest in finding novel ways to effectively regulate triglycerides in the blood to help manage these potentially life-threatening common conditions.

Now, researchers at Baylor College of Medicine, Princeton University and Texas A&M University are closer to achieving this goal after discovering the 3-D structure and mode of action of diacylglycerol O-acyltransferase-1 (DGAT1), the enzyme that synthesizes triglycerides and also is required for human dietary fat absorption and storage. DGAT1 is a known target to treat obesity and other metabolic diseases, so having a detailed understanding of what DGAT1 looks like and how it works opens opportunities for designing novel strategies for managing these conditions. The findings are published in the journal Nature.

"DGAT1 is a particularly interesting enzyme because it synthesizes triglycerides, which are the main component of hard fat, the type of fat usually found in the belly or midsection in our body. Triglycerides also are part of the particles that transport cholesterol - high-density lipoproteins (HDL, or 'good cholesterol'), and low-density and very-low-density lipoproteins (LDL and VLDL, or 'bad cholesterols')," said co-corresponding author Dr. Ming Zhou, Ruth McLean Bowman Bowers Professor in Biochemistry in the Department of Biochemistry and Molecular Biology at Baylor. "Learning to regulate this enzyme can help regulate fat synthesis and potentially manage related conditions."

Lie Wang, a graduate student in the Zhou lab, took the lead on this project. He applied cryo-electron microscopy, a technique that enables scientists to see how biomolecules move and interact as they perform their functions, to visualize the 3-D structure of DGAT1.

"This project was challenging because DGAT1 is embedded in biological membranes where it carries its function," Wang said. "We also developed an enzymatic assay, or test, to monitor the activity of DGAT1 in real time. Thanks to the integration of high-quality structure and precise functional studies we were able to unveil the structure of this important enzyme and gain novel insights into the mechanism of action."

DGAT1 is located in the membrane of the endoplasmic reticulum, a cellular structure engaged in the synthesis of proteins and lipids.

"It was exciting to discover that DGAT1 forms a large chamber inside the membrane, which was unexpected," Wang said. "This 'reaction chamber' isolates a space within the membrane where the enzymatic synthesis of triglycerides takes place."

"The reactants meet inside the chamber and that is where the reaction occurs. Then, the triglycerides bud-off the membrane in lipid droplets that carry them to where they are needed in the cell," Zhou said. "Neither this 3-D structure of DGAT1 nor its mechanism of action were known before in such detail."

This study not only reveals the structure and mode of action of a human enzyme that is essential for proper human metabolism, but it also enables researchers to explore the effects of molecules that interact with DGAT1 and potentially regulate its activity.
-end-
Hongwu Qian, Yin Nian, Yimo Han, Zhenning Ren, Hanzhi Zhang, Liya Hu, B. V. Venkataram Prasad, Arthur Laganowsky and Nieng Yan also contributed to this work.

This study was supported by grants from the NIH (DK122784, HL086392 and GM098878), the Cancer Prevention and Research Institute of Texas (R1223), the Robert Welch Foundation (Q1279), the Ara Parseghian Medical Research Foundation and the New Jersey Council for Cancer Research. Additional support was provided by the Shirley M. Tilghman endowed professorship from Princeton University, the Princeton Center for Complex Materials and the National Science Foundation (NSF)-MRSEC program (DMR-1420541).

Baylor College of Medicine

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.