New, rapid mechanism for atmospheric particle formation

May 13, 2020

Carnegie Mellon University researchers working with an international team of scientists have discovered a previously unknown mechanism that allows atmospheric particles to very rapidly form under certain conditions. The research, which was published in the journal Nature, could aid efforts to model climate change and reduce particle pollution in cities.

"The only real uncertainties in our understanding of climate in the atmosphere have to do with fine particles and clouds, how these have changed over time and how they will respond to climate change," said Neil Donahue, Thomas Lord University Professor of Chemistry and a professor in the departments of Chemical Engineering, and Engineering and Public Policy.

The number of particles in the atmosphere at any given time can have major effects locally and globally, including contributing to unhealthy smog in cities and influencing the Earth's climate. However, particles need to reach a certain size -- around 100 nanometers in diameter -- to contribute to those effects, Donahue noted.

If particles don't reach that size, they quickly get subsumed into other, larger particles. This means that one would expect few new particles to be created in polluted urban environments where the air is already full of larger particles that could gobble up small, new particles. Yet new particle formation is relatively common in those environments, as plainly seen when haze reforms rapidly after rainfall in cities around the world.

Donahue thinks the answer to that mystery may lie in this new research. "We found a new way for tiny nucleated particles in the atmosphere to grow up quickly to become large enough to affect climate and health," he said.

Donahue's lab group has long been part of the CLOUD experiment, an international collaboration of scientists that use a special chamber at CERN in Switzerland to study how cosmic rays affect the formation of particles and clouds in the atmosphere. The chamber allows researchers to precisely mix vaporous compounds and observe how particles form and grow from them.

In this study, designed by Carnegie Mellon chemistry doctoral candidate Mingyi Wang, the CLOUD team condensed nitric acid and ammonia vapors across a wide range of temperatures and found that the resulting new particles can grow 10 to 100 times faster than previously observed, allowing them to reach sizes large enough to avoid being consumed by other particles. The compound formed from those two vapors, ammonium nitrate (a common fertilizer), was previously known to be a contributor to atmospheric pollution within larger particles, but its role in helping tiny particles grow was not known.

"This may help explain how nucleated particles grow up in polluted urban conditions in mega-cities, which has been a big puzzle, as well as how they form in the upper parts of the atmosphere, where they can have a strong climate effect," Donahue explained. The team is now working to study how this mechanism plays out in Earth's upper atmosphere.

For Wang, who served as co-leader of the study, this research has roots in his keen desire to understand air pollution. After an undergraduate research project where he got to sample and analyze PM2.5, Wang decided to continue in this field of research to better explore how these small particles can have such a big impact on the planet and how that impact could be remedied.

"I realized that those atmospheric particulate matters have never been a simple air quality problem that only Asia needs to deal with," Wang said. "Rather, they are a global challenge due to their health and climate effects."

Carnegie Mellon University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to