Gene that's key to cloning success also hints at serious hurdles to reproductive cloning

May 14, 2002

PHILADELPHIA -- Scientists at the University of Pennsylvania have found that the activity of a single gene is a powerful predictor of whether newly cloned mammalian embryos will survive and thrive, but the gene's sporadic expression in cloned mouse embryos casts fresh doubt on prospects for reproductive human cloning.

The findings, by a team led by K. John McLaughlin and Hans R. Schöler of Penn's School of Veterinary Medicine, are described in the May 15 issue of the journal Genes & Development.

Despite the successful cloning of sheep, pigs and cats, mammalian cloning -- in which an ordinary cell's nucleus is transferred to an egg whose nucleus has been removed -- remains remarkably inefficient. Fewer than three in 100 cloned mouse embryos survive to birth.

McLaughlin and Schöler's group showed that the activity of the gene Oct4 correlates strongly with the viability of cloned embryos but also found that in only one-tenth of cloned mouse embryos is the gene expressed at the right level in the right place at the right time. Without Oct4, embryos cannot survive; even if Oct4 expression is a tad high or low, an embryo will die.

"Cloning requires the precise reprogramming of the nucleus inserted into an enucleated egg," said Schöler, professor of animal biology and director of Penn's Center for Animal Transgenesis and Germ Cell Research. "This nucleus must abandon its former genetic program and adopt the genetic profile of an embryonic nucleus; failure to do so dooms the embryo."

To evaluate the accuracy of this genetic reprogramming, The Penn group analyzed Oct4 expression in cloned mouse embryos derived from cells that surround ovulated eggs in adult mice, cells that would not normally express Oct4. The result: Only 34 percent of embryonic cells correctly reprogrammed to express Oct4, and just 10 percent showed levels of Oct 4 expression conducive to further development.

Even as it suggests new hurdles for reproductive human cloning, The Penn work offers new support for the feasibility of therapeutic cloning using embryonic stem cells.

"The small number of clones that did adequately express Oct4 were capable of forming embryonic stem cell lines," Schöler said, "supporting existing evidence of the scientific feasibility of therapeutic cloning even as it shows the infeasibility of reproductive human cloning."

The Penn team chose Oct4 as a marker because its expression is tightly regulated throughout the mammalian life cycle. Oct4, which encodes a protein critical to normal embryonic development, is expressed only in the portion of the embryo that eventually gives rise to fetal tissues; in the adult, Oct4 is expressed only in germ cells.

Although improper expression of Oct4 can single-handedly obstruct embryonic development, Oct4 is likely not the only gene expressed incorrectly in cloned embryos.

"When we started the study, we thought Oct4 misexpression might account for a fraction of clone failures," Schöler said. "The big surprise was that Oct4 alone can explain most of the failures, although Oct4 is probably just one gene of many whose misexpression can cause cloned embryos to fail."
Schöler and McLaughlin, assistant professor of animal biology, were joined in the Genes & Development paper by Michele Boiani, Sigrid Eckhardt, all of the Center for Animal Transgenesis and Germ Cell Research at Penn's School of Veterinary Medicine. Their work is supported by the Marion Dilley and David George Jones Funds and the Commonwealth and General Assembly of Pennsylvania.

University of Pennsylvania

Related Embryos Articles from Brightsurf:

Zebrafish embryos help prove what happens to nanoparticles in the blood
What happens to the nanoparticles when they are injected into the bloodstream, for example, to destroy solid tumours?

Artificial intelligence system developed to help better select embryos for implantation
Investigators from Brigham and Women's Hospital and Massachusetts General Hospital are developing an artificial intelligence system with the goal of improving IVF success by helping embryologists objectively select embryos most likely to result in a healthy birth.

Embryos taking shape via buckling
The embryo of an animal first looks like a hollow sphere.

Who's your daddy? Male seahorses transport nutrients to embryos
New research by Dr Camilla Whittington and her team at the University of Sydney has found male seahorses transport nutrients to their developing babies during pregnancy.

Study suggests embryos could be susceptible to coronavirus
Genes that are thought to play a role in how the SARS-CoV-2 virus infects our cells have been found to be active in embryos as early as during the second week of pregnancy, say scientists at the University of Cambridge and the California Institute of Technology (Caltech).

Spawning fish and embryos most vulnerable to climate's warming waters
Spawning fish and embryos are far more vulnerable to Earth's warming waters than fish in other life stages, according to a new study, which uniquely relates fish physiological tolerance to temperature across the lifecycles of nearly 700 fish species.

Animal embryos evolved before animals
A new study by an international team of researchers, led by scientists from the University of Bristol and Nanjing Institute of Geology and Palaeontology, has discovered that animal-like embryos evolved long before the first animals appear in the fossil record.

Choosing the best embryos
Struggling with infertility? You are not alone. Infertility affects one out of every six Canadian couples.

Turtle embryos play a role in determining their own sex
In certain turtle species, the temperature of the egg determines whether the offspring is female or male.

Early in vitro testing for adverse effects on embryos
ETH researchers have combined embryonic cells and liver cells in a new cell culture test.

Read More: Embryos News and Embryos Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to