Bone marrow stem cells may one day help treat damaged livers

May 14, 2003

St. Louis, May 14, 2003 -- Research at Washington University School of Medicine in St. Louis suggests that stem cells from bone marrow or umbilical cord blood may be useful for treating people with liver damage due to cirrhosis, viral infection, trauma, chemotherapy or radiation therapy.

The study, done in immune deficient mice, showed that human stem cells that normally produce blood cells also can form liver-like cells in a damaged liver. The findings are published in the May 15 issue of the journal Blood.

"There is a huge demand for liver transplants but there are never enough organs, and the procedure is not always successful," says study leader Jan A. Nolta, Ph.D., associate professor of medicine. "We're hoping that in the future we can use bone marrow or umbilical cord blood stem cells from matched donors to help treat liver disease and reduce the need for liver transplants."

Nolta and her colleagues isolated highly purified human stem cells from bone marrow and umbilical cord blood and transplanted them into immune-deficient mice. The purified stem cells normally give rise to cells that mature into red blood cells and white blood cells.

A month later, after the human stem cells had established themselves in the animal's bone marrow, the investigators induced liver damage. Some mice also were given human hepatocyte growth factor to increase the number of stem cells that developed, or differentiated, into liver cells (also known as hepatocytes).

A month after inducing the liver damage, the investigators compared the damaged organs to healthy ones from control mice that also had been transplanted with human stem cells. They tested the livers for the presence of human albumin, a protein produced only by liver cells. Any human albumin found in these mice would have to have come from transplanted human stem cells that had developed into liver-like cells.

Nolta and her colleagues found the greatest number of human-albumin-producing cells in the damaged livers of mice that had been treated with human hepatocyte growth factor. In some cases, albumin began showing up as early as five days after treatment. The number of stem cells that had differentiated into liver-like cells was low, however, making up less than 1 percent of all liver cells. Human albumin was not detected in mice with healthy livers.

The investigators believe that the stem cells moved from the bone marrow into the circulating blood, then left the blood to reside in the damaged liver, where they became liver-like cells that produced human albumin.

"These results show that human stem cells from bone marrow and umbilical cord blood are a potential source of liver cells," says Nolta, who also is a member of the Hematopoietic Development and Malignancy Research Program at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The study also represents the first successful animal model for studying how stem cells from human bone marrow and umbilical cord blood might be used to treat liver disease.

Nolta and her colleagues now are working to increase the number of human stem cells that differentiate into liver cells in this model by studying the signals that draw the cells into the liver and control their transformation, a feature known as stem-cell plasticity. In addition, they are investigating the use of blood-forming stem cells for the repair of heart and skeletal muscle.
-end-
Wang X, Ge S, McNamara G, Hao Q-L, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood, 101 (10), 4201-4208, May 15, 2003.

Funding from the National Heart, Lung, and Blood Institute and from the National Institute of Diabetes and Digestive and Kidney Diseases supported this research.

Washington University School of Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.