Innovative antennae may signal a 'new wave' in health care provision

May 14, 2008

Compact, wireless and power efficient body sensors that allow doctors to monitor illnesses and injuries remotely are a step closer thanks to new research.

The use of biosensors attached to the body for health monitoring is not new. However, antennas that enable such devices to be linked together efficiently on a patient's body without wires are currently too uncomfortable to wear for a long time because they need to be large in order to maximise the strength of the signal being received. They can be reduced in size but this leads to the antenna being less efficient, meaning that the battery powering the device has to be recharged more frequently.

Experts in antennas and bioelectromagnetics at Queen's University Belfast (QUB), with funding from the Engineering and Physical Sciences Research Council (EPSRC), have developed new types of antenna that get round these limitations.

Their work could revolutionise the way patient care is provided, making unnecessary visits for tests and check-ups a thing of the past. Instead, biosensors could gather data on heart rate, respiration, posture, gait etc, transmitting this information by radio signal to a control unit also on the patient's body. The data could then be accessed by doctors via the internet or mobile phone, for example.

The new types of antenna are the first in the world to deliberately harness the so-called 'creeping wave' effect. With a conventional on-body antenna the majority of the signal is transmitted either away from the patient or inwards, where it is absorbed by the patient's body which weakens the signal. The rest of the signal, though, hugs the skin's surface and 'creeps' round the body where it is picked up by the control unit.

However, only a small amount of the signal behaves in this 'creeping' way and so its overall strength has to be increased to allow enough of it to reach the control unit. Although traditional antenna designs can be used, they are physically large and typically protrude up to 4cm from the body surface for the frequency bands used by systems such as WiFi. Reducing the size leads to poor system efficiency.

The new antennas developed at QUB solve these problems. They are specifically designed to accentuate the creeping wave effect by maximising the amount of signal radiated out to the antenna's side, rather than inwards and outwards. They are up to 50 times more efficient than previously available designs of the same dimensions. Due to the lower power requirement resulting from this step change in on-body performance and efficiency, the QUB team has succeeded in reducing antenna thickness from 34mm to less than 5mm thick for their new patch antenna, for example.

The antennas can therefore be fitted almost anywhere on the patient without causing significant inconvenience and are sufficiently low-profile to be incorporated into clothing or worn as part of a wound dressing. One QUB design is now the subject of a patent application, with more anticipated.

The unique design of the new antennas could unlock the full potential of emerging 'wireless body area network' (WBAN) technology. A WBAN is a network of biosensors attached to different parts of a patient's body. Patients wearing a WBAN could carry on with their normal lives - the doctor remotely monitoring the data gathered by the network would simply contact them to arrange appointments when needed.

"The UK leads the world in the development of wearable communications including WBAN antennas," says Dr William Scanlon, who is leading the QUB project. "With EPSRC funding, our group at QUB, along with other related projects at the University of Birmingham, Queen Mary College and elsewhere, could help unleash the full potential of WBAN technology. We could change the way that a range of illnesses, injuries and conditions are monitored, perhaps within five years".
-end-
Notes for Editors

The 3-year project "High-efficiency, Low-profile Antennas with Adjustable Propagating Modes for Wireless Area Body Networks" commenced in July 2006 and will receive total EPSRC funding of just over £340,000.

Project partners include the Home Office Science Development Branch, the Police Scientific Development Branch, chipset manufacturer Zarlink Semiconductor, antenna manufacturer European Antennas, and materials manufacturer Taconic.

WBANs also have many potential applications in other fields, such as the monitoring of firefighters' heartbeat, respiration and movement as they tackle a blaze.

A key role in the research is being played by a specially designed reverberation chamber at QUB where the performance of wearable antennas can be studied under 'live' conditions and with unprecedented accuracy. The construction of this unique facility has been funded entirely as part of the current EPSRC-funded project.

The strength of signal transmitted by the new antennas (measured in microwatts) does not have any health or safety implications for humans.

Using wires to connect the different parts of the WBAN system is not a viable alternative to the use of antennas as it would make the WBANs too uncomfortable to wear and is less reliable due to the risk of cabling faults through repeated movement.

Bioelectromagnetics is the study of how living organisms interact with electromagnetic waves.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and the physical sciences. The EPSRC invests around £740 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC: www.epsrc.ac.uk/

For more information, contact:

Dr William Scanlon, The Institute of Electronics, Communications and Information Technology, Queen's University Belfast, Tel: 07854 827818, E-mail: w.scanlon@qub.ac.uk

Two images (TestingScanlon.jpg and WearableScanlon.jpg) are available from the EPSRC press office. Contact: Natasha Richardson, e-mail: natasha.richardson@epsrc.ac.uk, tel: 01793 444404.

Suggested captions:

TestingScanlon.jpg: "Body of evidence: wearable antennas, like the ones being tested here, could change the face of patient care."

WearableScanlon.jpg: "Keeping abreast of progress: circular wearable antennas mounted on a chest and undergoing tests."

Engineering and Physical Sciences Research Council

Related Injuries Articles from Brightsurf:

COVID-19 frequently causes neurological injuries
Without directly invading the brain or nerves, the virus responsible for COVID-19 causes potentially damaging neurological injuries in about one in seven infected, a new study shows.

Head and neck injuries make up nearly 28% of all electric scooter accident injuries
A Henry Ford study is sounding the alarm on the rise of electric scooter injuries, and particularly head and neck injuries, since the 2017 introduction of e-scooter rideshare programs in urban centers.

Reasons for football injuries
If professional footballers are out of action due to injuries, this can have serious consequences for the club.

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.

Concerns over police head injuries
Head injuries may be worryingly common among police officers, according to a new pilot study led by the University of Exeter.

Firework-related eye injuries
Emergency department data were used to describe the number, type, severity and factors associated with firework-related eye injuries that occurred in the United States from 1999 to 2017.

Injuries from motorized scooters
Motorized scooters are increasingly popular and, in this study, researchers analyzed medical information for 61 adults who visited a single emergency department with scooter-related injuries.

Children's fingertip injuries could signal abuse
Many children who suffer fingertip injuries have been abused, according to a Rutgers study.

Cell phone injuries
Cell phones are mainstays of daily life. This observational study analyzed 20 years of data on people who went to emergency departments with head and neck injuries from cell phone use to estimate the number of injuries, learn what types of injuries there were, and understand how the injuries occurred, such as from distracted driving or walking.

New study looks at motorized scooter injuries
More than half of people who received X-rays or CT scans after electric scooter accidents were found to have injuries, most commonly to the upper extremities, according to a new study.

Read More: Injuries News and Injuries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.