Commencement 2008: Student innovation could improve data storage, magnetic sensors

May 14, 2008

Troy, N.Y. -- Paul Morrow, who will graduate from Rensselaer Polytechnic Institute on May 17, has come a long way from his days as an elementary school student, pulling apart his mother's cassette player. The talented young physicist has developed two innovations that could vastly improve magnetic data storage and sense extremely low level magnetic fields in everything from ink on counterfeit currency to tissue in the human brain and heart.

First, Morrow developed a nanomaterial that has never before been produced. The nanomaterial is an array of freestanding nanoscale columns composed of alternating layers of magnetic cobalt and non-magnetic copper. Morrow's three-dimensional arrangement of the magnetic and non-magnetic layers creates a material that exhibits promising magnetic properties for data storage and magnetic field sensing at room temperature. Similar technology is currently in use in hard drives around the world, but they both use a two-dimensional film design for the layers.

"Because the nanostructure is three-dimensional, it has the potential to vastly expand data storage capability," Morrow said. "A disk with increased data storage density would reduce the size, cost, and power consumption of any electronic device that uses a magnetic hard drive, and a read head sensor based on a small number of these nanocolumns has promise for increasing spatial sensitivity, so that bits that are more closely spaced on the disk can be read. This same concept can be applied to other areas where magnetic sensors are used, such as industrial or medical applications."

Morrow has also developed a microscopic technique to measure the minute magnetic properties of his nanocolumns. Prior to his innovation, no such method existed that was fine-tuned enough to sense the magnetic properties of one or even a small number of freestanding nanostructures.

The technique uses a specialized scanning tunneling microscope (STM) that Morrow built that contains no internal magnetic parts. Most STMs in use today have magnetic parts that make it impossible for them to operate reliably in an external magnetic field according to Morrow. With his modified non-magnetic STM, Morrow was able to use an electromagnet to control the magnetic behavior of his nanocolumns and measure the magnetic properties of fewer than 10 nanocolumns at one time.

"To date it has been extremely difficult to get an instrument to detect magnetic properties on such a small scale," Morrow said. "With this type of sensitivity, engineers will be able to sense the very low level magnetic properties of a material with sub-micron spatial resolution."

He is currently working to fine-tune the device to detect the properties of just one nanocolumn. His technique could have important implications for the study of other magnetic nanostructures for magnetic sensing applications including motion sensors for industrial applications, detection of magnetic ink in currency and other secure documents, and even help detect and further understand the minuscule magnetic fields generated by the human body.

His discoveries have been published in two articles in the journal Nanotechnology.

Morrow proudly originates from the city of Spartanburg, S.C., the only boy in a close family that includes three sisters. His father is a retired chemistry professor at Wofford College, the local liberal arts college that Morrow attended for his bachelor's, and his mother is a master teacher who instructs elementary schoolteachers in improving their teaching methods. "Their love of learning and teaching has inspired me to one day become a teacher myself," Morrow said.
-end-
Morrow will graduate from Rensselaer with a doctorate in physics, applied physics, and astronomy.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Rensselaer Polytechnic Institute

Related Human Brain Articles from Brightsurf:

Does the human brain resemble the Universe?
An astrophysicist of the University of Bologna and a neurosurgeon of the University of Verona compared the network of neuronal cells in the human brain with the cosmic network of galaxies... and surprising similarities emerged

New multiscale view of the human brain
Researchers from University of Barcelona study how multilayers that form the human brain interact at different resolutions

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Researchers explore how the human brain is so resilient
Future technology may be able to monitor and modify the brain to produce enhanced team performance, while increasing the efficiency and accuracy of decisions.

Nanoelectronics learn the same way as the human brain
Activities in the field of artificial intelligence, like teaching robots to walk, demand ever more powerful, yet at the same time more economical computer chips.

New genomic atlas of the developing human brain
Researchers at Gladstone Institutes and UC San Francisco (UCSF) Weill Institute for Neurosciences have created a comprehensive region-specific atlas of the regulatory regions of the genome linked to human embryonic brain development.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

New method provides unique insight into the development of the human brain
Stem cell researchers at Lund University in Sweden have developed a new research model of the early embryonic brain.

One step closer to understanding the human brain
An international team of scientists led by researchers at Karolinska Institutet in Sweden has launched a comprehensive overview of all proteins expressed in the brain, published today in the journal Science.

Read More: Human Brain News and Human Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.