Focus on the formation of bones, teeth and shells

May 14, 2009

Researchers at Eindhoven University of Technology for the first time have shown the earliest stages in biomineralization, the process that leads to the formation of bones, teeth and sea shells.

They used the world's most modern electron microscope to capture a three-dimensional image of the nanoparticles that form the basis for this process. The results provide a greater understanding of the formation of bones, teeth and shells. This creates a prospect of better materials and processes for industry, based on nature. The findings featured as the cover story for the scientific journal Science on Friday 13 March.

The researchers, led by Vidi laureate Dr Nico Sommerdijk, managed to image small clusters, with a diameter of 0.7 nanometers, in a solution of calcium carbonate, (the basic material of shells, for example). They were the first to show that these clusters, containing no more than about ten ions, were the start of the growth process from which the crystalline biomineral is ultimately formed.

To do this, they used the extremely high resolution of a special electron microscope, the FEI Company's cryoTitan. The equipment was acquired with the assistance of a NWO Large Investment grant for the TU/e and Maastricht University. It allowed them to be the first in their field to see how the clusters nucleated into larger, unstructured nanoparticles with an average diameter of about 30 nanometers.

Three-dimensional imaging revealed that an organic surface introduced by the researchers allowed these nanoparticles to grow into larger particles, in which crystalline areas could be formed later, through structuring of the ions. The TU/e researchers demonstrated a second role for the organic layer: it directed quite precisely the direction in which the mineral could grow into a mature biomineral. In the near future they hope to show that the mechanism they have discovered also applies to the formation of other crystalline biominerals, and perhaps even to other inorganic materials.

This is important for research into the growth of bones and substitute bone material. The work might also be used in nanotechnology, to direct the growth of nanoparticles in the same way as appears to happen in nature: through a subtle interplay of organic and inorganic materials.

About biomineralisation

Biomineralisation is the formation of inorganic materials in a biological environment, familiar from bones, teeth and shells. The formation of the mineral is quite precisely directed here by specialised organic biomolecules, such as sugars and proteins. While the underlying mechanisms have long been a subject of study, there are still many mysteries in the details of this process.

One commonly followed strategy is to use 'biomimetic' studies, where the biomineralisation process is mimicked with a simplified system in the laboratory. This allows individual parts of the mineralisation process to be studied.

Using this approach, as well as the electron microscope mentioned above, Sommerdijk's research group at the TU/e Faculty of Chemical Technology managed to capture images of the earliest stages of this type of biomimetically led mineralisation reaction.
Nico Sommerdijk undertook this work with a Vidi grant from NWO The cryoTEM equipment was partly financed with a NWO Large Investment grant.

Netherlands Organization for Scientific Research

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to