Children's brain tumors more diverse than previously believed

May 14, 2012

Paediatric brain tumours preserve specific characteristics of the normal cells from which they originate - a previously unknown circumstance with ramifications for how tumour cells respond to treatment. This has been shown by Uppsala researcher Fredrik Swartling together with colleagues in the U.S., Canada and England in a study that was published today in the distinguished journal Cancer Cell.

Every year, 80-90 children in Sweden are afflicted with brain tumours, a serious form of paediatric cancer. Today, three of four children who receive treatment survive.

The discovery improves the prospects for finding more effective treatments for forms of paediatric cancer that are currently very difficult to cure and has great significance for understanding how brain tumours arise. The next step is to carry out the clinical analyses necessary for developing drugs that target specific types of brain tumours.

Trials were carried out using immature cells, or stem cells, from such regions of the brain as the cerebellum, cerebrum and brain stem. The stem cells were then compared with tumour cells from more than 100 patients. Cellular origin showed itself to be at least as important a determinant of tumour malignancy as the genetic mutations underlying the transformation of normal cells to tumour cells. The point in time at which tumours arose was also of great relevance to the effectiveness of treatment.

"We can't focus exclusively on mutated genes when looking at cancer," says Fredrik Swartling, who directed the study jointly with paediatric neurologist William Weiss, who works at the University of California children's hospital and brain tumour research center in San Francisco, California, in the U.S. "The status of the cells of origin giving rise to cancer is at least as important from a treatment standpoint. Our study shows that tumours contain markers for these cells of origin."

Brain tumours most often arise on account of accidental genetic mutations. One gene that mutates readily and is well-represented in paediatric brain tumours is the MYCN cancer gene. Previous research has proposed that patients with high levels of a specific cancer gene like MYCN should be treated in the same way. The current study shows that this is not the case.

"The tumours are more diverse that we believed," Fredrik Swartling says. "It is very important, even for patients who exhibit the exact same mutation of a cancer gene, whether their tumours arose in the cerebellum, cerebrum or brain stem and whether these tumours arose during fetal stages or following birth."

The researchers showed in the study that normal stem cells are transformed into brain tumour cells in vitro following introduction of the MYCN cancer gene to the cells. Stem cells from an early fetal stage and from a later life juncture were both transformed into tumour cells. The effectiveness of treatment differed, despite the fact that the same cancer gene had caused the tumours in each case.

That tumours reflect their origins makes it relatively simple to determine the origin of the cancer represented in a tumour biopsy from a patient. The challenge ahead will be to identify reliable markers for tumour origin to enable better judgement about treatment options and ensure the effectiveness of treatment in diverse cases.

"The goal is to develop a range of different treatments for patients of different types," Fredrik Swartling says. "It may take some time before such treatments are available at hospitals, but clinical trials involving drugs similar to those used in the study are already under way, and we are keeping our fingers crossed that the drugs will work as anticipated."
-end-
The study was financed by the Swedish Childhood Cancer Foundation, the Swedish Cancer Society and the Swedish Research Council, among other sources.

Uppsala University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.