Wearable ring, wristband allow users to control smart tech with hand gestures

May 14, 2018

New technology created by a team of Georgia Tech researchers could make controlling text or other mobile applications as simple as "1-2-3."

Using acoustic chirps emitted from a ring and received by a wristband, like a smartwatch, the system is able to recognize 22 different micro finger gestures that could be programmed to various commands - including a T9 keyboard interface, a set of numbers, or application commands like playing or stopping music.

A video demonstration of the technology shows how, at a high rate of accuracy, the system can recognize hand poses using the 12 bones of the fingers and digits '1' through '10' in American Sign Language (ASL).

"Some interaction is not socially appropriate," said Cheng Zhang, the Ph.D. student in the School of Interactive Computing who led the effort. "A wearable is always on you, so you should have the ability to interact through that wearable at any time in an appropriate and discreet fashion. When we're talking, I can still make some quick reply that doesn't interrupt our interaction."

The system is also a preliminary step to being able to recognize ASL as a translator in the future, Zhang said. Other techniques utilize cameras to recognize sign language, but that can be obtrusive and is unlikely to be carried everywhere.

"If my wearable can translate it for me, that's the long-term goal," Zhang said.

The system is called FingerPing. Unlike other technology that requires the use of a glove or a more obtrusive wearable, this technique is limited to just a thumb ring and a watch. The ring produces acoustic chirps that travel through the hand and are picked up by receivers on the watch. There are specific patterns in which sound waves travel through structures, including the hand, that can be altered by the manner in which the hand is posed. Utilizing those poses, the wearer can achieve up to 22 pre-programmed commands.

The gestures are small and non-invasive, as simple as tapping the tip of a finger or posing your hand in classic "1," "2," and "3" gestures.

"The receiver recognizes these tiny differences," Zhang said. "The injected sound from the thumb will travel at different paths inside the body with different hand postures. For instance, when your hand is open there is only one direct path from the thumb to the wrist. Any time you do a gesture where you close a loop, the sound will take a different path and that will form a unique signature."

Zhang said that the research is a proof of concept for a technique that could be expanded and improved upon in the future.
-end-
The research was presented last month at the 2018 ACM Conference on Human Factors in Computing Systems (CHI). The paper is titled FingerPing: Recognizing Fine-grained Hand Poses Using Active Acoustic On-body Sensing (Cheng Zhang, Qiuyue Xue, Anandghan Waghmare, Ruichen Meng, Sumeet Jain, Yizeng Han, Xinyu Li, Kenneth Cunefare, Thomas Ploetz, Thad Starner, Omer Inan, Gregory Abowd).Researchers on this team, including Zhang, have worked on similar unique gesture techniques in the past. Zhang graduated from Georgia Tech in May and will join the Information Science Department at Cornell University as a tenure-track assistant professor.

Georgia Institute of Technology

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.