Nav: Home

Dead zones in circadian clocks

May 14, 2019

[Background]

Most organisms on Earth have circadian clocks. In mammals, the circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the brain. The SCN consists of about 20,000 neurons, and oscillatory gene expression with an approximate 24-hour period can be observed independently in each. These cell-autonomous oscillations of gene expression are controlled by delayed negative feedback regulation of circadian clock genes, and function as a circadian clock to regulate the behavioral and physiological rhythms of organisms.

One of the important properties of circadian clocks is the response to light signals, which enables organisms to become entrained to the 24-hour light-dark cycle on Earth. It has been shown that circadian clocks respond to light signals during the night, whereas they do not respond to such signals during the daytime. This holds true even when an organism is kept in complete darkness; a short light pulse does not change the time of the circadian clock when body time of the individual is at daytime. The time period in which the circadian clock is insensitive to light signals is referred to as the "dead zone". Previous studies have indicated that the presence of a dead zone improves the robustness of the clock. However, the mechanism underlying its generation is unclear.

[Results]

Researchers from Kanazawa University used mathematical modeling and computer simulations to elucidate the mechanism underlying dead-zone generation. Different species have different light-response mechanisms. For example, in the circadian clock system of the fruit fly Drosophila, light signals induce degradation of the circadian repressor protein TIMELESS. In contrast, in mammals, light signals are perceived by the eyes and induce expression of the circadian clock gene Period within the SCN. These differences led researchers from Kanazawa University to question whether the mechanisms for dead-zone generation in these two species are common or distinct.

To address this question, the researchers utilized a mathematical model called the Goodwin Model. This model was used to describe a negative feedback loop in the circadian clock system by considering the concentrations of mRNA and protein as variables. Numerical simulations demonstrated that saturation of transcription of Timeless mRNA induces the generation of a daytime dead zone in the Drosophila circadian clock. In the mammalian circadian clock, saturation of translation, rather than transcription, of PERIOD protein generates a dead zone. Computer simulations demonstrated that saturation of these reactions nullifies the effect of light signals only during the daytime. Thus, saturation of the synthesis of a repressor protein in the negative feedback loop that regulates circadian oscillation may be a conserved mechanism for generating daytime dead zones among different species.

[Significance and future prospects]

The dead zone is considered to be important for robust entrainment of circadian clocks to light-dark cycles. The present study shows that, in principle, even single neurons can realize a dead

zone. This finding suggests that the fundamental properties of circadian clocks are determined at the single-cell level.

Entrainment of the circadian clock to light-dark cycles is fundamental to human health. For example, a mismatch between clock time within the body and the time in a local place can cause jet-lag. Thus, studying the response of the circadian clock to light signals is essential in order to understand one of the most common biological clocks on Earth, which may have medical utility.
-end-


Kanazawa University

Related Circadian Clock Articles:

How circadian clocks communicate with each other
Multiple biological clocks control the daily rhythms of physiology and behavior in animals and humans.
Circadian clock changes can alter body's response to diet
Changing the circadian clock in mouse liver can alter how the body responds to diet and also change the microbes living in the digestive track.
Red and violet light reset the circadian clock in algae via novel pathway
A Nagoya University-led team uncovered a pathway in the alga Chlamydomonas reinhardtii that resets its circadian clock on exposure to red or violet light.
TSRI researchers show how circadian 'clock' may influence cancer pathway
A new study led by scientists at The Scripps Research Institute describes an unexpected role for proteins involved with our daily 'circadian' clocks in influencing cancer growth.
Powering up the circadian rhythm
Salk team first to discover protein that controls the strength of body's circadian rhythms.
With a broken circadian clock, even a low-salt diet can raise resting blood pressure, promote disease
In the face of a disrupted circadian rhythm, a low-salt diet and a hormone known to constrict blood vessels have the same unhealthy result: elevated resting blood pressure and vascular disease, scientists report.
Bacteria engineered with synthetic circadian clocks
Many of the body's processes follow a natural daily rhythm or so-called circadian clock, so there are certain times of the day when a person is most alert, when the heart is most efficient, and when the body prefers sleep.
New research helps to explain how temperature shifts the circadian clock
One important aspect of the internal time-keeping system continues to perplex scientists: its complex response to temperature, which can shift the clock forward or backward, but cannot change its 24-hour period.
Circadian clock controls insulin and blood sugar in pancreas
A new Northwestern Medicine study has pinpointed thousands of genetic pathways an internal body clock takes to dictate how and when our pancreas must produce insulin and control blood sugar, findings that could eventually lead to new therapies for children and adults with diabetes.
Uncovering the secrets of sleep and circadian rhythms
Our circadian rhythms tell us when it's time to sleep and energize us at different times of the day; evidence suggests it also plays a role in the development of diseases such as cancer.

Related Circadian Clock Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".