Nav: Home

Relay station in the brain controls our movements

May 14, 2019

The relay station of the brain, the substantia nigra consists of different types of nerve cells and is responsible for controlling the execution of diverse movements. Researchers at the University of Basel's Biozentrum have now characterized two of these cell populations more precisely and has been able to assign an exact function to each of them. The results of the study have now been published in Cell Reports.

Whether we move our arms, legs or the entire body, every movement is centrally controlled by our brain. Different brain regions and neuronal networks play an essential role in this process. This includes the substantia nigra, which has been minimally investigated so far. Like a relay station, this region receives and distributes signals in order to appropriately orchestrate the execution of a desired movement.

Using a mouse model, Prof. Kelly Tan's research group at the Biozentrum, University of Basel, has now identified two cell populations in the substantia nigra that are responsible for different aspects of locomotion.

Correct movement thanks to teamwork of neuron populations

The research team investigated the substantia nigra anatomically, genetically and functionally. It became apparent that this region consists of several different types of nerve cells. The researchers could identify two of the populations and describe them in more detail. While one population is responsible for initiating a motor task, the second population ensures the continuity of the desired movement.

"The heterogeneity of neuronal populations in the brain, also in the substantia nigra, is a well acknowledged concept. In our study, not only we decipher the function of two nerve cell groups, but we also show that they work together to produce correct locomotion," says Giorgio Rizzi, first author of the study.

Signals for movement control are interrupted in Parkinson's disease

The findings of the study are also important in regard to Parkinson's disease. Patients suffer from motor control abnormalities because certain nerve cells degenerate.

"Interestingly these cells are interaction partners of the population we identify as essential for movement initiation. This means that the signals of the cell population are no longer received and transmitted; and this dysfunction may underlie the movement initiation impairment symptom observed in Parkinson's disease patients," says Kelly Tan.

In the future, the research team aims to continue identifying other cell populations of the substantia nigra and elucidate their motor functions.

"With regard to Parkinson's disease, we will assess how each network is altered as a result of the disease and how this affects movement. If we understand the circuit modifications, we may find a way to tackle this neurodegenerative disorder and relieve the symptoms of Parkinson's disease patients," states Kelly Tan.
-end-


University of Basel

Related Nerve Cells Articles:

How hearing loss can change the way nerve cells are wired
Even short-term blockages in hearing can lead to remarkable changes in the auditory system, altering the behavior and structure of nerve cells that relay information from the ear to the brain, according to a new University at Buffalo study.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Nerve-insulating cells more diverse than previously thought
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet in Sweden.
Aggregated protein in nerve cells can cause ALS
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord.
Aggression causes new nerve cells to be generated in the brain
A group of neurobiologists from Russia and the USA, including Dmitry Smagin, Tatyana Michurina, and Grigori Enikolopov from Moscow Institute of Physics and Technology, have proven experimentally that aggression has an influence on the production of new nerve cells in the brain.
More Nerve Cells News and Nerve Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.