Nav: Home

How stressed-out bacteria may trigger autoimmune response

May 14, 2019

Washington, DC - May 14, 2019 - Stressful life events most likely contribute to autoimmune diseases, but scientists don't have a deep understanding of the underlying chain of events. A study on mice published this week in mSystems suggests that the gut microbiota may play a significant role in that connection. Researchers found that the onset of stress caused changes in the intestinal bacteria that, in turn, stimulated the activity of immune cells in a way that increased the likelihood that the body would attack itself.

The factors behind autoimmune diseases, conditions in which the body's immune defense attacks its own tissues and systems, can be difficult to pin down. That's partly because these diseases vary in severity and presentation. They include multiple sclerosis, lupus, rheumatoid arthritis, juvenile diabetes, scleroderma, and pulmonary fibrosis. The National Institutes of Health estimates that more than 20 million people in the United States have autoimmune diseases, the vast majority of whom are women.

Although researchers have identified some inherited risks, autoimmune diseases are believed to arise from the complex interplay of genetic and environmental factors. In the study published in mSystems, immunologist Orly Avni, PhD, at Bar Ilan University, worked with graduate student Michal Werbner and other collaborators to investigate environmental risks, like psychological and social stress, because those offer opportunities for potential treatment.

"We know that there's strong crosstalk between the immune system and the microbiota," Avni said. An important step in understanding how stress may lead to autoimmune conditions, she said, is to identify the genetic responses of bacteria. Her group's study showed that social stress changed both the composition and transcriptional patterns in the microbiota. "And the consequent immune response to that threat jeopardized the tolerance to self," she said.

The researchers studied two groups of mice. One was exposed to stress in the form of daily, threatening encounters with other dominant and aggressive mouse. The other group was left alone. After 10 days, the researchers analyzed the gut microbiome of each group and found that the stressed mice had higher levels of some bacteria. Those included Bilophila and Dehalobacterium microbes, genera that have been observed at unusually high abundance in patients with multiple sclerosis.

However, Avni says she's as interested in bacterial behavioral as she is in composition. The study showed that stress led to the activation of bacterial genes related to potentially violent traits -- including growth, motility, and signals sent between a pathogen and a host. Microbes with these traits can travel to other parts of the body, including lymph nodes, and elicit an immune response.

When the researchers analyzed the lymph nodes of stressed mice, they found an increased abundance of several known pathogenic bacterial species. They also found a higher percentage of effector T cells known to play a role in autoimmunity. These findings suggest that stress causes changes in the activity of the gut microbes, which in turn influence the immune response in a way that can eventually trigger an attack of the body.

The study shows that gut bacteria can sense and respond to social stress, but Avni notes that researchers need to better understand how that long-lasting interaction works between bacteria and their hosts.

"It's not enough to study the composition, or the increase or decrease of a species," she said. "We also have to understand how the microbiota sense us, and how they change their 'behavior' accordingly." That knowledge, she added, could potentially lead to tailored microbial interventions that could dampen autoimmunity and additional stress-inducible illness.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 32,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".