Nav: Home

Rice blast fungus study sheds new light on virulence mechanisms of plant pathogenic fungi

May 14, 2019

Rice blast fungus (Magnaporthe oryzae) is a global food security threat due to its destruction of cultivated rice, the most widely consumed staple food in the world. Disease containment efforts using traditional breeding or chemical approaches have been unsuccessful as the fungus can rapidly adapt and mutate to develop resistance. Because of this, it is necessary to understand fungal infection-related development to formulate new, effective methods of blast control.

A group of scientists at Nanjing Agricultural University and Louisiana State University Health Sciences Center examined the fungal cell biology of rice blast fungus pathogenesis and recently published the first systematic and comprehensive report on the molecular mechanism of the actin-binding protein (MoAbp1) that plays a crucial role in the pathogenicity of the fungus.

Through ongoing research, these scientists found that rice blast fungus forms a specialized infection structure that applies mechanical force to rupture the rice leaf cuticle. Once inside the host, the infection proliferates by living off the plant's nutrients. These two processes are enabled by the actin-binding protein (MoABp1) that links an actin-regulating kinase (MoArk1) and a cyclase-associated protein (MoCap1) to an actin protein (MoAct1). These processes are necessary for the growth and perseverance of the fungus.

On a large scale, these findings shed a new light on the eukaryotic cell biology and virulence mechanisms of plant pathogenic fungi. On a smaller scale, these findings could reveal novel approaches or targets for anti-blast fungus management.
-end-
For additional details, read "Magnaporthe oryzae Abp1, a MoArk1 Kinase-Interacting Actin Binding Protein, Links Actin Cytoskeleton Regulation to Growth, Endocytosis, and Pathogenesis" published in Molecular Plant-Microbe Interactions in April 2019.

About Molecular Plant-Microbe Interactions (MPMI)

Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.

American Phytopathological Society

Related Fungus Articles:

Single fungus amplifies Crohn's disease symptoms
A microscopic fungus called Candida tropicalis triggered gut inflammation and exacerbated symptoms of Crohn's disease, in a recent study conducted at Case Western Reserve University School of Medicine.
A novel anticandidal compound containing sulfur from endophytic fungus
There is a continuous search for new, safe and relatively cheaper drugs with the advent of new diseases and increasing antibiotic resistance.
Plants cheat too: A new species of fungus-parasitizing orchid
Plants usually produce their own nutrients by using sun energy, but not all of them.
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
What happens to a pathogenic fungus grown in space?
A new study, published this week in mSphere, provides evidence that Aspergillus fumigatus, a significant opportunistic fungal threat to human health, grows and behaves similarly on the International Space Station compared with earth.
More Fungus News and Fungus Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...